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1 A computer network has vertices V and edges E. Each vertex represents a computer
and there is an edge between two computers if there is communication between them.
The network has no cycles, and each vertex is adjacent to at most 4 others. Some of the
computers are infected by malware, and an engineer investigates a subset V1 ⊂ V . If a
computer is infected, the engineer has a probability 1/4 of detecting the malware, and
the outcome of the engineer’s investigation on different computers in V1 is independent,
given the state — infected or not — of each computer. The engineer detected malware in
a subset V2 ⊂ V1 of the investigated computers.

The engineer wants to estimate the number of infected computers in the network.
Let Xi be a random variable taking values in {0, 1}, such that Xi = 1 indicates an infection
in computer i. The engineer puts a prior distribution p on the state XV = (Xi)i∈V of all
the computers, defined by

p(xV ) = Z exp





∑

{i,j}∈E

(2xi − 1)(2xj − 1)−
1

10

∑

i∈V

xi



 for xV ∈ {0, 1}V ,

where Z is a normalising constant.

Provide a plausible justification for this prior distribution and write down the
posterior distribution of XV given the outcome of the engineer’s investigations.

Describe efficient algorithms to perform each of the following tasks. You may cite
any algorithm defined in the course, but must justify your choice and explain how to use
its output.

(a) Finding the most likely configuration x∗V ∈ {0, 1}V for the variable XV under
the posterior distribution.

(b) Computing the exact posterior mean of the number of infected computers.

(c) Estimating the posterior probability, q, that the number of infected computers
is more than twice the number of vertices in V2. The variance of your estimator should be
at most q(1− q)/1000.

In each case, how does the computational cost of the algorithm depend on the
number of vertices |V |? Explain briefly.
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2 Let π be a probability measure on (Rd,B), where B is the Borel σ-algebra, and
suppose X = (X1, . . . ,Xd) ∼ π.

(a) Define the random scan Gibbs sampler with target distribution π.

(b) LetKt be the t-step transition kernel of the Gibbs sampler in part (a). Now, let ν
be the law of the random vector F (X) = (f(X1), f(X2), . . . , f(Xd)), where f : R → R is a
continuous bijection. And let Qt be the t-step transition kernel for the random scan Gibbs
sampler with target distribution ν. Prove that if Y ∼ Kt(x, ·), then F (Y ) ∼ Qt(F (x), ·).

(c) Using the result of part (b), prove that if the kernel K satisfies

‖Kt(x, ·)− π‖TV 6 2−t ∀x ∈ R
d,

then, the kernel Q satisfies

‖Qt(x, ·)− ν‖TV 6 2−t ∀x ∈ R
d.

3 Let ν and µ be probability measures on R
d. For a random vector X taking values

in R
d, let Xi be the ith coordinate of X, and X−i be a vector containing all coordinates

except i. Denote ν(xi | x−i) the complete conditional density of the ith coordinate under ν
with respect to the Lebesgue measure on R. We shall assume that all complete conditionals
of ν and µ have densities with respect to Lebesgue measure. Define

p(x, i) =
µ(xi | x−i)

ν(xi | x−i)
for x ∈ R

d, i ∈ {1, 2, . . . , d},

and suppose there exist c1, c2, such that 0 < c1 < p(x, i) < c2 for all x ∈ R
d and

i ∈ {1, . . . , d}.

A Tempered Gibbs Sampling Markov chain (X(t))t>1 is defined by the following
iteration. Given the state at time t, X(t), we sample the next state by first sampling a
coordinate i in {1, 2, . . . , d} with probability proportional to p(X(t), i), settingX−i(t+1) =
X−i(t), and sampling Xi(t+ 1) from the complete conditional µ(xi | x−i = X−i(t)).

(a) Prove that (X(t))t>1 is π-reversible for some probability measure π, and find π.

(b) Suppose that (X(t))t>1 is stationary and geometrically ergodic and let h : Rd →
[0, 1]. Prove that the estimator

Ĥn =
d

n

n
∑

i=1

1
∑d

i=1 p(X(t), i)
h(X(t))

converges in probability to H =
∫

h(x)ν(dx), i.e. for all ǫ > 0, Pr(|Ĥn −H| > ǫ) → 0 as
n → ∞.

[You can cite any result from the lecture notes. ]

Part III, Paper 216 [TURN OVER]



4

4 A scientist wishes to apply Bayesian linear regression to a data set with responses
Y ∈ R

n and design matrix X ∈ R
n×p. The model with parameter β ∈ R

p assumes

Y | X,β ∼ N(Xβ, σ2I).

We only observe a subset O ⊂ {1, . . . , n} × {1, . . . , p} of the entries in the design matrix,
so that the data consist of Y , and XO = (Xi,j ; (i, j) ∈ O). We consider the entries
observed, O, to be fixed and independent of X and Y . Furthermore, we assume that
Xi,j ∼ Bernoulli(πj) independently for all i = 1, . . . , n and j = 1, . . . , p.

The prior distribution makes all the parameters independent, with β ∼ N(0, σ2
βI)

and πj ∼ Uniform([0, 1]) for each j = 1, . . . , p.

(a) Define the two steps of the Expectation-Maximisation algorithm for finding the
maximum a posteriori (MAP) estimator of the parameters (β, π), with the unobserved
covariates XU = (Xi,j ; (i, j) /∈ O) as latent variables.

(b) Write down the conditional distribution of XU given Y,XO, β, π.

(c) The E-step in the algorithm of part (a) yields a function Q(β, π | β(t), π(t)),
where (β(t), π(t)) is the value of the parameters at iteration t. Prove that this function is
of the form

−(β − d)TA(β − d) +

p
∑

j=1

rj log πj + qj log(1− πj) + constants

for some coefficients d ∈ R
p, A ∈ R

p×p, r ∈ R
p and q ∈ R

p. Write an expression for A as
an expectation and prove that it is positive definite. Explain how the computational cost
of finding the coefficients depends on the number of unobserved covariates in each row of
X.

(d) Given the output of the E-step, solve the M-step. [You may express your answer
in terms of the coefficients d, (rj), and (qj), defined in part (c).]

5 Let Y ∈ R
n×p be a contingency table. A zero-inflated Poisson model makes the

entries of Y independent, and the distribution of Yi,j a mixture of a point mass at 0 with
weight πj, and a Poisson distribution with mean µi,j = αiβj with weight 1− πj.

Let the prior distribution of the parameters be αi ∼ Gamma(1, 1) for i = 1 . . . , n,
and βj ∼ Gamma(1, 1), πj ∼ Beta(1, 1) for j = 1, . . . , p, with all parameters independent
a priori.

We would like to sample the posterior distribution of the parameters α = (α1, . . . , αn),
β = (β1, . . . , βp), and π = (π1, . . . , πp) given observations Y . Introduce auxiliary variables
and define a Gibbs sampler such that the distributions required at each step may be
sampled easily, and specify these distributions.
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6 The Hamiltonian Monte Carlo Markov chain (Xt, Pt)t>1, where Xt and Pt are R
d-

valued random variables, is defined by the following iteration. Given the state at time t,
(Xt, Pt), define x(0) = Xt, p(0) = Pt, and the Leapfrog recursion with step size ε:

p(t+ ε/2) = p(t)−
ε

2
∇U(x(t))

x(t+ ε) = x(t) + εp(t+ ε/2)

p(t+ ε) = p(t+ ε/2) −
ε

2
∇U(x(t+ ε)).

Apply this recursion L times to obtain (x(Lε), p(Lε)). Then set Xt+1 = x(εL) with
probability α(Xt, Pt, x(εL), p(εL)), and otherwise set Xt+1 = Xt. Finally, sample Pt+1

from a N(0, I) distribution.

(a) Suppose that the stationary distribution of the process has density π(x, p) =
Z−1 exp(−U(x)− pT p/2) with respect to the Lebesgue measure, where Z is a normalising
constant. Write down the acceptance probability α(Xt, Pt, x(εL), p(εL)).

Now suppose that U(x) = xTx/2.

(b) Prove that (x(Lε), p(Lε)) is a linear transformation of (x(0), p(0)).

(c) Prove that if L > 0 is fixed, there exist C and ε0, such that for all ε < ε0,

1− Cε3 6 α(Xt, Pt, x(εL), p(εL)) 6 1.

[Hint: For any M ∈ R
d×d, xTMTMx 6 ρxTx for all x ∈ R

d, where ρ is the largest

eigenvalue of MTM . Furthermore, if MTM has the following block structure:

MTM =

[

(1 +O(ε4))I O(ε3)I
O(ε3)I (1 +O(ε4))I

]

then, ρ = 1+O(ε3). We say f(ε) = O(g(ε)) if |f(ε)| 6 Kg(ε) for all ε 6 ε0, for some con-

stants K, ε0.]

END OF PAPER
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