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(a) Let (xn)n>0 be a real sequence satisfying xn+m 6 xn + xm for all n,m > 0.
Prove that the limit of xn/n as n→∞ exists and satisfies

lim
n→∞

xn
n

= inf
{xn

n

}
.

(b) Let d > 2 and consider bond percolation on Z
d with p ∈ (0, 1]. For eachm denote

B(m) = [−m,m]d ∩ Z
d and ∂B(m) = {(x1, . . . , xd) ∈ B(m) : ∃ i s.t. xi ∈ {−m,m}}.

(i) For each n ∈ N let en = (n, 0, . . . , 0). Prove that for each p there exists φ(p) such
that

lim
n→∞

(
−
1

n
logPp(0↔ en)

)
= φ(p).

(ii) Prove that for each n ∈ N there exists x ∈ ∂B(n) with x1 = n such that

Pp(0↔ x) >
1

|∂B(n)|
Pp(0↔ ∂B(n)) .

(iii) By relating (Pp(0↔ ∂B(m)))m to (Pp(0↔ en))n or otherwise prove that

lim
n→∞

(
−
1

n
log Pp(0↔ ∂B(n))

)
= φ(p).

(You may use without proof that there exist positive constants c1 and c2 so that c1n
d−1 6

|∂B(n)| 6 c2n
d−1 for all n.)
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Let d > 2 and consider bond percolation on Z
d with p ∈ (0, 1]. For each m denote

B(m) = [−m,m]d ∩ Z
d and ∂B(m) = {(x1, . . . , xd) ∈ B(m) : ∃ i s.t. xi ∈ {−m,m}}.

Denote by pc the critical probability.

(a) If p < pc, show that there exists a positive constant c so that for all n > 1 we
have

Pp(0↔ ∂Bn) 6 e−cn.

(You may use without proof that

p̃c = sup{p ∈ [0, 1] : ∃ a finite set S ∋ 0 with φp(S) < 1},

where φp(S) = p
∑

(x,y)∈∂S Pp

(
0

S
←→ x

)
, satisfies p̃c = pc.)

(b) Let C be the open cluster of 0, i.e. the set of vertices of Zd connected to 0 via
open paths of edges. Let χ(p) = Ep[|C|]. Show that

χ(p) <∞ if and only if p < pc.

3

Let G = (V,E) be a finite connected graph with conductances (c(e))e on the edges.
Let a and b be two distinguished vertices. Let X be a weighted random walk on G with
edge weights (c(e))e. For every x ∈ V define τx = min{t > 0 : Xt = x}.

(a) Define the terms: voltage, current flow and effective resistance between a and b.

(b) Let x ∈ V \ {a, b}. Show that

P(τa < τb | X0 = x) 6
Reff(x, {a, b})

Reff(x, a)
.

(Hint: Consider excursions from x back to x and take the first one that hits {a, b}.)

(c) Prove that the effective resistance satisfies

1

Reff(a, b)
= inf

{
1

2

∑

x,y

(f(x)− f(y))2c(x, y) : f(a) = 1 and f(b) = 0

}
,

where the infimum is over all functions satisfying the two boundary conditions.

(Hint: The three parts are unrelated.)
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(a) Define the term uniform spanning tree of a finite connected graph G.

(b) Describe Wilson’s algorithm for generating a uniform spanning tree of a finite
connected graph G.

Explain the meaning of the term “uniform spanning tree of an infinite recurrent
graph” and describe a way of generating it.

(c) Let T be a uniform spanning tree of Z2. Show that if e is an edge of Z2, then

P(e ∈ T ) =
1

2
.

(Hint: Show that the expected degree of a vertex in T is 2 by considering an
exhaustion of Z2 by balls.)

END OF PAPER
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