MAT3, MAMA, MGM3

MATHEMATICAL TRIPOS F

Part III

Tuesday, 4 June, 2019 9:00 am to 12:00 pm

PAPER 211

ADVANCED FINANCIAL MODELS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Let X be a given an n-dimensional random vector. Throughout this question, you may *not* use a fundamental theorem of asset pricing without proof.

(a) Suppose that $H \in \mathbb{R}^n$ is such that $H \cdot X \ge 0$ almost surely and $\mathbb{P}(H \cdot X > 0) > 0$. Prove that there does not exists a positive random variable ρ such that $\mathbb{E}(\rho) = 1$ and $\mathbb{E}(\rho X) = 0$.

Given a positive random variable ζ , define a function F on \mathbb{R}^n by

$$F(h) = \mathbb{E}[e^{-h \cdot X}\zeta].$$

Suppose F is everywhere finite and smooth. Let

$$f = \inf_{h \in \mathbb{R}^n} F(h).$$

A sequence $(h_k)_k$ such that $F(h_k) \to f$ is called a minimising sequence.

(b) Suppose there exists a bounded minimising sequence. Show that there exists a positive random variable ρ such that $\mathbb{E}(\rho) = 1$ and $\mathbb{E}(\rho X) = 0$.

(c) Suppose every minimising sequence is unbounded. Show that there exists a vector $H \in \mathbb{R}^n$ such that $H \cdot X \ge 0$ almost surely and $\mathbb{P}(H \cdot X > 0) > 0$.

(d) Suppose that there exists a unique positive random variable ρ such that $\mathbb{E}(\rho) = 1$ and $\mathbb{E}(\rho X) = 0$. Show that every random variable Y is of the form $Y = a + b \cdot X$ for constants $a \in \mathbb{R}$ and $b \in \mathbb{R}^n$. [Hint: Use part (b) twice with $\zeta = e^{cY - Y^2 - ||X||^2}$ for c = 0 and c = 1.]

UNIVERSITY OF

2 Let *S* be a positive random variable such that $\mathbb{E}(S) = 1$. Let *X*, *Y* and *Z* have the unit exponential $f_X(x) = e^{-x} \mathbb{1}_{\{x>0\}}$, Cauchy $f_Y(y) = \frac{1}{\pi}(y^2 + 1)^{-1}$ and standard normal $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$ densities, respectively.

(a) Prove that

$$M(\theta) = \mathbb{E}(e^{\theta \log S})$$

is well-defined and bounded for all $\theta \in \{p + iq : 0 \leq p \leq 1, q \in \mathbb{R}\}$, where $i = \sqrt{-1}$.

(b) Compute $M(\theta)$ in the case where $S = (1+t)e^{-tX}$, for a constant t > 0.

(c) Prove the identity

$$\mathbb{E}[(S-K)^+] = 1 - \sqrt{K} \mathbb{E}\left[M\left(\frac{1}{2}(1+iY)\right)e^{-\frac{1}{2}iY\log K}\right] \text{ for all } K > 0.$$

Explain briefly why the above identity is useful in the context of a stochastic volatility model such as the Heston model. You may use without proof the identity

$$\mathbb{E}(e^{\mathbf{i}Yt}) = e^{-|t|} \text{ for all } t \in \mathbb{R}.$$

(c) Let $G(S) = e^{-\frac{1}{2}(\log S)^2}$. Prove that

$$\mathbb{E}[G(S)] = \mathbb{E}[M(\mathbf{i}Z)]$$

where $Z \sim N(0, 1)$. You may use without proof the identity

$$\mathbb{E}(e^{\mathrm{i}tZ}) = e^{-t^2/2}.$$

CAMBRIDGE

3

Consider a continuous time model of a market with two assets with positive prices (B, S) where

$$dB_t = B_t r_t dt, dS_t = S_t(\mu_t dt + \sigma_t dW_t),$$

where each of the processes r, μ and σ are adapted, positive and continuous, and where W is a Brownian motion which generates the filtration \mathcal{F} .

(a) Let Y be a local martingale deflator with $Y_0 = 1$. Show that

$$dY_t = -Y_t(r_t \ dt + \lambda_t \ dW_t)$$

for an adapted, continuous process λ to be determined in terms of the given processes r, μ and σ .

(b) Fix a non-random T, and let ξ_T be a non-negative, bounded \mathcal{F}_T -measurable random variable. Show that there exists an admissible pure-investment trading strategy $(\phi_t, \pi_t)_{0 \leq t \leq T}$ such that $\phi_T B_T + \pi_T S_T = \xi_T$ almost surely. Show that the minimal initial cost among all such replication strategies is

$$\phi_0 B_0 + \pi_0 S_0 = \mathbb{E}(Y_T \xi_T)$$

where Y is the local martingale deflator from part (a). [You may use standard results from stochastic calculus if clearly stated.]

Now suppose that r, μ and σ are positive constants, and suppose that the payout of the claim in part (b) is of the form $\xi_T = g(S_T)$. Let (ϕ, π) be the minimal cost replicating portfolio.

(c) Show that there exists a function $V: [0,T] \times \mathbb{R}_+ \to \mathbb{R}_+$ with the property that

$$V(t, S_t) = \phi_t B_t + \pi_t S_t$$
 for all $0 \leq t \leq T$.

(d) Assuming that the function V in part (c) is smooth, show that there is a function \tilde{V} with the property that $\pi_t = \tilde{V}(t, S_t)$. How is \tilde{V} related to V?

CAMBRIDGE

5

4 Consider a discrete-time market with n assets with (possibly negative) prices $(P_t)_{t \ge 0}$.

(a) What is an investment-consumption arbitrage? What is a terminal-consumption arbitrage?

(b) What is a numéraire strategy? Prove that if the market has an investment-consumption arbitrage and a numéraire strategy, then the market has a terminal consumption arbitrage.

(c) Suppose there exists a non-negative adapted process $(Z_t)_{t\geq 0}$ such that

$$\mathbb{P}(Z_t = 0 \text{ for all } t) = 0$$

and such that the process M defined by

$$M_t = (-1)^t Z_t P_t$$

is a martingale. Prove that the market has no numéraire strategies.

[You may use without proof the standard properties of local martingales discussed in lectures. You may also also use the fact that if $(X_t)_{t\geq 0}$ is a local martingale with respect to a filtration $(\mathcal{F}_t)_{t\geq 0}$ then $(X_{t_k})_{k\geq 0}$ is a local martingale with respect to the filtration $(\mathcal{F}_{t_k})_{k\geq 0}$ for any increasing (non-random) sequence $(t_k)_{k\geq 0}$.]

5 Consider a discrete-time market model with prices $(P_t^T)_{t \in [0,T], T \ge 1}$ where P_t^T is the price at time t of a risk-free zero-coupon bond of unit face value and maturity T. Assume that the prices are adapted to a filtration $(\mathcal{F}_t)_{t \ge 0}$, and that the market is free of arbitrage.

(a) Explain why $P_t^T > 0$ almost surely for all $0 \le t \le T$.

(b) Define the spot interest rate r_t in terms of the bond prices. Define the bank account B_t in terms of the spot interest rate. What does it mean to say a probability measure \mathbb{Q} is a risk-neutral measure for this model?

(c) Show that $T \mapsto P_t^T$ is non-increasing almost surely for all t if and only if $r_t \ge 0$ almost surely for all $t \ge 0$.

(d) Suppose the spot interest rate $(r_t)_{t \ge 1}$ evolves as

$$1 + r_t = \zeta_{t-1}(1 + r_{t-1})$$

where where $(\zeta_t)_{t\geq 1}$ is a sequence of positive independent and identically distributed random variables generating the filtration $(\mathcal{F}_t)_{t\geq 0}$. For exponents $n \in \mathbb{Z}$, let

$$M(n) = \mathbb{E}^{\mathbb{Q}}(\zeta_1^n)$$

for a fixed risk-neutral measure \mathbb{Q} , and assume M is finite-valued. Compute the bond price P_t^T in terms of the function M.

UNIVERSITY OF

6 Consider a market with two assets, a bank account with time-t price e^{rt} and a stock whose price dynamics satisfy

6

$$dS_t = S_t(r \ dt + \sqrt{v_t} dW_t)$$

$$dv_t = (a - bv_t)dt + c\sqrt{v_t}(\rho dW_t + \sqrt{1 - \rho^2} dZ_t)$$

where r, a, b, c and ρ are contants, with a, b > 0 and $-1 \leq \rho \leq 1$, and W and Z are independent Brownian motions.

Let $F: [0,T] \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ satisfy the partial differential equation

$$\frac{\partial F}{\partial t} + Sr\frac{\partial F}{\partial S} + (a - bv)\frac{\partial F}{\partial v} + \frac{1}{2}S^2v\frac{\partial^2 F}{\partial S^2} + c\rho Sv\frac{\partial^2 F}{\partial S\partial v} + \frac{1}{2}c^2v\frac{\partial^2 F}{\partial v^2} = rF$$

with boundary condition $F(T, S, v) = \sqrt{S}$.

Introduce a contingent claim with time-T payout $\xi_T = \sqrt{S_T}$.

(a) Show that there is no arbitrage relative to the bank account in the augmented market consisting of the bank account, stock and contingent claim, if the time-t price of the contingent claim is given by $\xi_t = F(t, S_t, v_t)$. You may use a fundamental theorem of asset pricing as long as it is stated carefully.

Suppose that $F(t, S, v) = \sqrt{S}e^{A(t)v + B(t)}$ for some functions $A, B : [0, T] \to \mathbb{R}$.

(b) Show that A satisfies an ordinary differential equation. You should derive the equation, including the boundary conditions, but need not solve it.

(c) Show that the function B is given by

$$B(t) = -\frac{1}{2}(T-t)r + k\int_t^T A(s)ds$$

for a constant k which you should find in terms of the model parameters.

END OF PAPER