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1 Let X = (X1, . . . ,Xd) be a centred Gaussian random vector in R
d and assume

EX2
i 6 1 for all i = 1, . . . , d. Denote by ‖x‖∞ = maxi6d |xi| the maximum norm. Show

that for all u > 0 we have

Pr
(

‖X‖∞ >
√

2 log 2d+ u
)

6 e−
2u

2

π2 .

[Hint: You may use the following inequality from lectures without proof: For any Lipschitz
function f : Rd → R with gradient vector ∇f , and any λ > 0, we have

EX [eλ(f(X)−Ef(X)) ] 6 EX,Y
[

e
λπ

2
〈∇f(X),Y 〉

Rd

]

where Y is an independent copy of X, and where 〈·, ·〉Rd denotes the standard Euclidean in-
ner product on R

d.]

2 Let Π be a product prior distribution in R
K whose marginal distributions all have

identical probability density function π : R → (0,∞), and such that | log π(x)− log π(y)| 6
c|x− y| for some constant c > 0 and all x, y ∈ R. Suppose observations

Y =
(

Yk = θk +
1√
n
gk : k ∈ N

)

∼ P Y
θ , n ∈ N,

arise in the Gaussian sequence space model, and denote by Π(·|Y ) the resulting posterior
distribution on R

K . Consider inference on the functional

T (θ) = 2θ2 − θ1 + 4θ4

via a one-sided posterior credible interval Cn = {t ∈ R : t − T (Y ) 6 Rn} for T (θ) where
Rn is such that Π(Cn|Y ) = 1 − α for some α > 0. Show that for every θ0 such that
∑

k θ
2
0,k < ∞ we have

P Y
θ0(T (θ0) ∈ Cn) → 1− α as n → ∞

and find the limit in probability of
√
nRn.

[Hint: You may use without the proof the fact that if EPn
etX → EP e

tX almost surely
for all t ∈ R, a sequence of possibly random probability measures Pn on R and P the law of
a normal distribution on R, then also sups∈R |Pn(X 6 s)−P (X 6 s)| → 0 almost surely.]
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3 Suppose you are given observations

Y =
(

Yk = θk +
1√
n
gk : k ∈ N

)

∼ P Y
θ , n ∈ N, θ ∈ ℓ2,

in the Gaussian sequence space model, where

ℓ2 = {(θk : k ∈ N) : ‖θ‖2ℓ2 ≡
∑

k∈N

θ2k < ∞}.

For given θ0 ∈ ℓ2, consider the testing problem

H0 : θ = θ0 vs. H1 : θ ∈ Θn : ‖θ − θ0‖ℓ2 > Mεn, M > 0, εn > 0,

where Θn = {θ ∈ ℓ2 : θk = 0 ∀ k > Kn, ‖θ‖ℓ2 6 n}. Suppose Kn → ∞ in such a way that

ε2n =
Kn

n
log n → 0

as n → ∞. Show that there exists a test Ψn(Y ) (a function of Y taking only values 0, 1)
such that, for every c1 > 0 we can find M large enough such that the type-I and type-II
errors of Ψn are bounded as

max
[

Eθ0Ψn, sup
θ∈H1

Eθ(1−Ψn)
]

6 e−c1Kn logKn , n ∈ N.

[Hint: You may use without proof results about covering numbers of balls in Eu-
clidean spaces, as well as basic concentration inequalities for one-dimensional Gaussian
random variables, provided they are clearly stated.]
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4 Suppose you are given observations

Y =
(

Yk = θk +
1√
n
gk : k ∈ N

)

∼ P Y
θ , n ∈ N, θ ∈ ℓ2,

in the Gaussian sequence space model, where

ℓ2 = {(θk : k ∈ N) : ‖θ‖2ℓ2 ≡
∑

k∈N

θ2k < ∞}.

Suppose Θ is a compact subset of ℓ2 such that for every ε > 0 it can be covered by

exp
[

(1/ε)1/4
]

-many ℓ2-balls of radius ε. Define the least squares estimator θ̂ = θ̂(Y ) for

Θ and prove that for every θ0 ∈ Θ we have

P Y
θ0

(

‖θ̂ − θ0‖ℓ2 > cn−4/9
)

→ 0

as n → ∞ for c > 0 a large enough constant independent of n.

[Hint: You may use concentration results for Gaussian processes from lectures with-
out proof, provided they are clearly stated.]
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