MAT3, MAMA

MATHEMATICAL TRIPOS Part III

Thursday, 6 June, 2019 9:00 am to 12:00 pm

PAPER 205

MODERN STATISTICAL METHODS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Let H_1, \ldots, H_m be a sequence of null hypotheses with associated *p*-values p_1, \ldots, p_m . Let $I \subseteq \{1, \ldots, m\}$ be the indices corresponding to the set of true null hypotheses. What does it mean for a multiple testing procedure to control the *familywise error rate* (FWER) at level α ?

Consider the procedure that sets $R = \min\{j : p_j > \alpha\}$ and rejects hypotheses H_1, \ldots, H_{R-1} if R > 1, rejects all hypotheses if R is not defined (so $p_j \leq \alpha$ for all j), and rejects no hypotheses if R = 1. Prove that the FWER is controlled at level α .

Suppose random variables Z_1, \ldots, Z_p have joint distribution P. What does it mean for P to satisfy the *global Markov property* with respect to a DAG \mathcal{G} ? [You need not define graph terminology such as *d*-separation in your answer.]

Define

 $S = \{ DAGs \ \mathcal{G} \text{ such that } P \text{ is global Markov with respect to } \mathcal{G} \}.$

Fix $j, k \in \{1, \ldots, p\}$ with $j \neq k$ and let H_0 be the null hypothesis that there exists $\mathcal{G} \in \mathcal{S}$ where nodes j and k are not adjacent. Suppose that for each $S \subseteq \{1, \ldots, p\} \setminus \{j, k\}$ we have a p-value p_S for the null hypothesis H_S that $Z_j \perp \!\!\!\perp Z_k | Z_S$. Note that H_{\emptyset} should be understood as the null hypothesis that Z_j and Z_k are independent. Give, with careful justification, a non-trivial procedure for testing H_0 that will falsely reject H_0 with probability at most α . [You may assume without proof that every DAG has a topological order.]

2 Given independent data $x_1, \ldots, x_n \sim N_p(\mu, \Sigma^0)$ where $\Sigma^0 \in \mathbb{R}^{p \times p}$ is positive definite, write down the maximum likelihood estimate $\hat{\Sigma}$ of Σ^0 .

For a matrix $A \in \mathbb{R}^{r \times s}$, let $||A||_1 = \sum_{j,k} |A_{jk}|$ and $||A||_{\infty} = \max_{j,k} |A_{jk}|$. Also define $||A||_{L_1} = \max_j \sum_i |A_{ij}| = \max_j ||A_j||_1$, where $A_j \in \mathbb{R}^r$ denotes the the *j*th column of A. Show that for two matrices $A \in \mathbb{R}^{r \times s}$ and $B \in \mathbb{R}^{s \times t}$, $||AB||_{\infty} \leq ||A||_{\infty} ||B||_{L_1}$. Show also that if r = s and A is symmetric then $||AB||_{\infty} \leq ||A||_{L_1} ||B||_{\infty}$.

Consider the following estimator for the precision matrix $\Omega^0 = (\Sigma^0)^{-1}$:

$$\hat{\Omega} := \underset{\Omega \in \mathbb{R}^{p \times p}}{\operatorname{arg\,min}} \|\Omega\|_1 \text{ subject to } \|\hat{\Sigma}\Omega - I\|_{\infty} \leqslant \lambda,$$

for some $\lambda > 0$. Assuming there is a feasible solution to the constrained optimisation problem above, so $\hat{\Omega}$ exists, show that $\hat{\Omega}_j$ is a minimiser over β of $\|\beta\|_1$ subject to $\|\hat{\Sigma}\beta - e_j\|_{\infty} \leq \lambda$, where $e_j \in \mathbb{R}^p$ is the *j*th standard basis vector.

Suppose for the remainder of this question that

$$\lambda \geqslant \|\hat{\Sigma} - \Sigma^0\|_{\infty} \|\Omega^0\|_{L_1}.$$

Show that $\|\hat{\Sigma}\Omega_j^0 - e_j\|_{\infty} \leq \lambda$ for all j. What does this imply about how $\|\hat{\Omega}_j\|_1$ compares to $\|\Omega_j^0\|_1$?

Next show that $\|\Sigma^0(\hat{\Omega} - \Omega^0)\|_{\infty} \leq 2\lambda$. [*Hint: consider subtracting and adding* $\hat{\Sigma}\hat{\Omega}$.] Finally show that $\|\hat{\Omega} - \Omega^0\|_{\infty} \leq 2\lambda \|\Omega^0\|_{L_1}$.

3 Let \mathcal{X} be a (non-empty) input space. What is a *positive definite kernel*? In the remainder of this question we will refer to a positive definite kernel as simply a kernel.

Show that if \mathcal{H} is an inner product space and $\phi : \mathcal{X} \to \mathcal{H}$ is a feature map, then $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$

is a kernel.

Show that if k_1, k_2, \ldots are kernels on input space \mathcal{X} , then

1. $\alpha_1 k_1 + \alpha_2 k_2$ is a kernel for $\alpha_1, \alpha_2 \ge 0$;

- 2. if $k(x, x') := \lim_{m \to \infty} k_m(x, x')$ exists for all $x, x' \in \mathcal{X}$ then k is a kernel;
- 3. if $k(x, x') := k_1(x, x')k_2(x, x')$ for all $x, x' \in \mathcal{X}$ then k is a kernel.

Write down the equation for the Gaussian kernel on \mathbb{R}^d with bandwidth σ^2 . Show that it is a positive definite kernel.

4

4 Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex function. What is meant by a *subgradient* of f at a point $x \in \mathbb{R}^d$? State a result concerning minimisation of f and subgradients. Write down the subdifferential of the absolute value function $|\cdot|$ at each $x \in \mathbb{R}$.

Explain the procedure of *coordinate descent* for minimising f.

Consider performing a Lasso regression with centred response $Y \in \mathbb{R}^n$ and design matrix $X \in \mathbb{R}^{n \times p}$ with centred columns scaled to have ℓ_2 -norm \sqrt{n} . Write down the optimisation problem solved by the Lasso with tuning parameter $\lambda > 0$.

Given an initialiser $\hat{\beta}^{(0)} \in \mathbb{R}^p$ for coordinate descent minimisation of the Lasso objective function, show that the next iterate $\hat{\beta}^{(1)} \in \mathbb{R}^p$ satisfies

$$\hat{\beta}_1^{(1)} = S_\lambda(R/n),$$

where $S_{\lambda}(t) = \max(|t| - \lambda, 0)\operatorname{sgn}(t)$ and $R \in \mathbb{R}$ is a function of Y, X and $\hat{\beta}^{(0)}$ that you should specify.

Now consider minimising

$$Q(\beta) = \frac{1}{2n} \|Y - X\beta\|_{2}^{2} + \lambda \sum_{j=1}^{p} \rho(\beta_{j})$$

where

$$\rho(t) = |t| \mathbb{1}_{\{|t| \le \delta\}} + \frac{t^2 + \delta^2}{2\delta} \mathbb{1}_{\{|t| > \delta\}}.$$

By considering the KKT conditions of the coordinatewise minimisation or otherwise, show that given an initialiser $\hat{\beta}^{(0)} \in \mathbb{R}^p$ for coordinate descent minimisation of Q, the next iterate $\hat{\beta}^{(1)} \in \mathbb{R}^p$ satisfies

$$\hat{\beta}_1^{(1)} = \begin{cases} S_\lambda(R/n) & \text{if } |S_\lambda(R/n)| \leqslant \delta \\ \frac{R/n}{1+\lambda/\delta} & \text{otherwise.} \end{cases}$$

 $[In \ this \ question \ you \ may \ use \ standard \ results \ about \ subgradients \ and \ subdifferentials \ without \ proof.]$

5 For a symmetric positive semi-definite matrix $\Sigma \in \mathbb{R}^{p \times p}$ and non-empty set $S \subset \{1, \ldots, p\}$ (where the inclusion is strict), we define the compatibility factor

$$\phi_{\Sigma}^{2}(S) = \inf_{\beta: \|\beta_{S}\|_{1} \neq 0, \|\beta_{N}\|_{1} \leq 3 \|\beta_{S}\|_{1}} \frac{\beta^{T} \Sigma \beta}{\|\beta_{S}\|_{1}^{2}/|S|},$$

where $N := \{1, \ldots, p\} \setminus S$. Prove that if symmetric positive semi-definite matrices $\Theta, \Sigma \in \mathbb{R}^{p \times p}$ have $\max_{j,k} |\Sigma_{jk} - \Theta_{jk}| \leq \phi_{\Sigma}^2(S)/(32|S|)$ then $\phi_{\Theta}^2(S) \geq \phi_{\Sigma}^2(S)/2$.

What does it mean for a random variable $W \in \mathbb{R}$ to be sub-Gaussian with parameter $\sigma > 0$? State an upper bound on $\mathbb{P}(W > t)$ for t > 0 in the case where additionally $\mathbb{E}W = 0$.

Now suppose matrix $X \in [-1, 1]^{n \times p}$ has independent rows with $\mathbb{E}(X_{ij}) = 0$ and $\mathbb{E}(X_{ij}X_{ik}) = \Sigma_{jk}$ for all i, j, k and positive definite matrix Σ . Let $\hat{\Sigma} = X^T X/n$. Show that

$$\mathbb{P}(\max_{j,k} |\hat{\Sigma}_{jk} - \Sigma_{jk}| > 4\sqrt{2\log(p)/n}) \leqslant \frac{2}{p^2}.$$

[You may use without proof the fact that if random variable W with $\mathbb{E}W = 0$ takes values in [-2, 2] then W is sub-Gaussian with parameter 2.]

Let c_{\min} be the minimum eigenvalue of Σ . State a result concerning the relative sizes of c_{\min} and $\phi_{\Sigma}^2(S)$ for non-empty $S \subseteq \{1, \ldots, p\}$. From the results above, give a condition on c_{\min} involving s, n and p such that when this holds, we have with probability at least $1 - 2p^{-2}$ that $\phi_{\hat{\Sigma}}^2(S) \ge c_{\min}/2$ for all S with $0 < |S| \le s < p$.

UNIVERSITY OF

6 Given a response $Y \in \mathbb{R}^n$ and design matrix $X \in \mathbb{R}^{n \times p}$ consider the regression estimator

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^p}{\arg\min} \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1 + \frac{\gamma}{2} \|\beta\|_2^2, \qquad (*)$$

where $\lambda > 0$ and $\gamma > 0$ are tuning parameters. Briefly explain why the minimising $\hat{\beta}$, which you may assume exists, is unique. In the case where X has two duplicate columns, argue that the corresponding coefficient estimates will be equal.

Write down the KKT conditions for the optimisation problem (*).

Now consider the noiseless linear model, $Y = X\beta^0$. Let $S = \{j : \beta_j^0 \neq 0\}$. Show that if $sgn(\beta^0) = sgn(\hat{\beta})$, then

$$\|X_N^T X_S (X_S^T X_S + n\gamma I)^{-1} \{\gamma \beta_S^0 / \lambda + \operatorname{sgn}(\beta_S^0)\}\|_{\infty} \leq 1.$$
(**)

Show further that if (**) holds and also

$$\operatorname{sgn}(\beta_S^0) = \operatorname{sgn}\left((X_S^T X_S + n\gamma I)^{-1} (X_S^T X_S \beta_S^0 - \lambda \operatorname{sgn}(\beta_S^0)) \right),$$

then we have $\operatorname{sgn}(\hat{\beta}) = \operatorname{sgn}(\beta^0)$.

END OF PAPER