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1 Fix 1/2 < p < 1. Let X1,X2, · · · be independent identically distributed random
variables with

P(X1 = 1) = p and P(X1 = −1) = 1− p.

Let Sn = X1 + · · ·+Xn and Fn = σ(X1, · · · ,Xn).

(a) Find λ ∈ (0, 1) so that λSn is martingale for (Fn).

In the following, we let ϕ(x) = λx for the value of λ found in (a). By convention, ϕ(0) = 1.

(b) Let Tx = inf{n : Sn = x}. Use the martingale ϕ(Sn) to show that for a < 0 < b,
where a, b ∈ Z, we have

P(Ta < Tb) =
ϕ(b)− ϕ(0)

ϕ(b)− ϕ(a)
.

(c) Deduce that for a < 0 < b, where a, b ∈ Z, we have

P(Ta <∞) = λ−a and P(Tb <∞) = 1.

(d) Is ϕ(Sn) uniformly integrable? Justify your answer.

2 Let Sn = X1 + · · · + Xn where X1,X2, · · · are independent and E(Xm) = 0,
E(X2

m) = σ2m ∈ (0,∞) for all m > 1. Let Fn = σ(X1, · · · ,Xn).

(a) Show that for c > 0, (Sn + c)2 is a submartingale for (Fn).

(b) Use the submartingale in (a) and Doob’s inequality to show that for all x > 0

P

(

max
16m6n

Sm > x

)

6
var(Sn)

var(Sn) + x2
.

(c) Show that S2
n − var(Sn) is a martingale for (Fn).

(d) Now, suppose in addition that |Xm| 6 K a.s. for all m > 0. Use the martingale in
(c) to show that for all x > 0

P

(

max
16m6n

|Sm| 6 x

)

6
(x+K)2

var(Sn)
.
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3 Let (Xn : n ∈ N) be a sequence of independent random variables, each uniformly
distributed on the set {−1, 1}. Set Sn = X1 + · · ·+Xn.

(a) Compute the cumulant generating function ψ of X1 and show that its Legendre
transform is given by

ψ∗(x) =
(1 + x) log(1 + x) + (1− x) log(1− x)

2
.

(b) Consider for 0 6 a < c 6 1 the event An = {an 6 Sn 6 cn}. Show that, for all
λ > 0, we have

P(An) > e−λcn+ψ(λ)nPλ(An)

where Pλ is the tilted probability measure, given by

dPλ/dP = eλSn−ψ(λ)n.

(c) Deduce by suitable choices of c and λ that, for all a ∈ [0, 1),

lim inf
n→∞

1

n
log P(Sn > an) > −ψ∗(a).

4

(a) What does it mean to say that a random process (Xt)t>0 is a Brownian motion in
R
d?

(b) Show that, if (Xt)t>0 is a Brownian motion in R
d and if U is an orthogonal d × d

matrix, then the process (UXt)t>0 is also a Brownian motion in R
d.

(c) Let D be a domain in R
d and let A be a measurable subset of its boundary ∂D.

For x ∈ D, define
φ(x) = P(XT ∈ A)

where (Xt)t>0 is a Brownian motion in R
d starting from x and

T = inf{t > 0 : Xt 6∈ D}.

Show that φ is a harmonic function on D.

(d) Find the function φ in the case d = 2 for

D = {(x, y) : x ∈ R, y > 0}, A = {(x, 0) : x > 0}.
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5 Let (Xt)t>0 be a Brownian motion in R
2. Let f be a continuous bounded probability

density function on R
2 and set

At =

∫ t

0
f(Xs)ds.

(a) Show that the set of times {t > 0 : |Xt| 6 1} is unbounded almost surely.

(b) Show that E(At/t) → 0 as t→ ∞.

(c) Show that At → ∞ as t→ ∞ almost surely.

6 LetM be a Poisson random measure on (0,∞) with intensity λdt, where λ ∈ (0,∞).
Let (Yn : n ∈ N) be a sequence of independent random variables, independent of M and
each uniformly distributed on [0, 1]. Given a measurable function g on [0, 1], define

Xt = Xg
t =

Nt
∑

n=1

g(Yn)

where Nt =M(0, t].

(a) Show that (Xt)t>0 is a Lévy process.

(b) In the case where g > 0, show that

E(Xt) = λt

∫ 1

0
g(y)dy.

(c) Find a necessary and sufficient condition on g for (Xt)t>0 to be a martingale.

(d) Given continuous functions g1 and g2 on [0, 1], find a necessary and sufficient
condition on g1 and g2 for the processes (Xg1

t )t>0 and (Xg2
t )t>0 to be independent.
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