MAT3, MAMA, EGT6 MATHEMATICAL TRIPOS

Part III

Monday, 3 June, 2019 1:30 pm to 4:30 pm

PAPER 201

ADVANCED PROBABILITY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Fix $1/2 . Let <math>X_1, X_2, \cdots$ be independent identically distributed random variables with

 $\mathbb{P}(X_1 = 1) = p$ and $\mathbb{P}(X_1 = -1) = 1 - p$.

Let $S_n = X_1 + \cdots + X_n$ and $\mathcal{F}_n = \sigma(X_1, \cdots, X_n)$.

(a) Find $\lambda \in (0,1)$ so that λ^{S_n} is martingale for (\mathcal{F}_n) .

In the following, we let $\varphi(x) = \lambda^x$ for the value of λ found in (a). By convention, $\varphi(0) = 1$.

(b) Let $T_x = \inf\{n : S_n = x\}$. Use the martingale $\varphi(S_n)$ to show that for a < 0 < b, where $a, b \in \mathbb{Z}$, we have

$$\mathbb{P}(T_a < T_b) = \frac{\varphi(b) - \varphi(0)}{\varphi(b) - \varphi(a)}.$$

(c) Deduce that for a < 0 < b, where $a, b \in \mathbb{Z}$, we have

$$\mathbb{P}(T_a < \infty) = \lambda^{-a}$$
 and $\mathbb{P}(T_b < \infty) = 1$.

(d) Is $\varphi(S_n)$ uniformly integrable? Justify your answer.

2 Let $S_n = X_1 + \cdots + X_n$ where X_1, X_2, \cdots are independent and $\mathbb{E}(X_m) = 0$, $\mathbb{E}(X_m^2) = \sigma_m^2 \in (0, \infty)$ for all $m \ge 1$. Let $\mathcal{F}_n = \sigma(X_1, \cdots, X_n)$.

- (a) Show that for c > 0, $(S_n + c)^2$ is a submartingale for (\mathcal{F}_n) .
- (b) Use the submartingale in (a) and Doob's inequality to show that for all x > 0

$$\mathbb{P}\left(\max_{1\leqslant m\leqslant n} S_m \geqslant x\right) \leqslant \frac{\operatorname{var}(S_n)}{\operatorname{var}(S_n) + x^2}.$$

- (c) Show that $S_n^2 \operatorname{var}(S_n)$ is a martingale for (\mathcal{F}_n) .
- (d) Now, suppose in addition that $|X_m| \leq K$ a.s. for all $m \geq 0$. Use the martingale in (c) to show that for all x > 0

$$\mathbb{P}\left(\max_{1\leqslant m\leqslant n}|S_m|\leqslant x\right)\leqslant \frac{(x+K)^2}{\operatorname{var}(S_n)}.$$

2

UNIVERSITY OF

3 Let $(X_n : n \in \mathbb{N})$ be a sequence of independent random variables, each uniformly distributed on the set $\{-1, 1\}$. Set $S_n = X_1 + \cdots + X_n$.

(a) Compute the cumulant generating function ψ of X_1 and show that its Legendre transform is given by

$$\psi^*(x) = \frac{(1+x)\log(1+x) + (1-x)\log(1-x)}{2}.$$

(b) Consider for $0 \leq a < c \leq 1$ the event $A_n = \{an \leq S_n \leq cn\}$. Show that, for all $\lambda \geq 0$, we have

 $\mathbb{P}(A_n) \ge e^{-\lambda cn + \psi(\lambda)n} \mathbb{P}_{\lambda}(A_n)$

where \mathbb{P}_{λ} is the tilted probability measure, given by

$$d\mathbb{P}_{\lambda}/d\mathbb{P} = e^{\lambda S_n - \psi(\lambda)n}.$$

(c) Deduce by suitable choices of c and λ that, for all $a \in [0, 1)$,

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \ge an) \ge -\psi^*(a).$$

 $\mathbf{4}$

- (a) What does it mean to say that a random process $(X_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R}^d ?
- (b) Show that, if $(X_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^d and if U is an orthogonal $d \times d$ matrix, then the process $(UX_t)_{t\geq 0}$ is also a Brownian motion in \mathbb{R}^d .
- (c) Let D be a domain in \mathbb{R}^d and let A be a measurable subset of its boundary ∂D . For $x \in D$, define

$$\phi(x) = \mathbb{P}(X_T \in A)$$

where $(X_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R}^d starting from x and

$$T = \inf\{t \ge 0 : X_t \notin D\}.$$

Show that ϕ is a harmonic function on D.

(d) Find the function ϕ in the case d = 2 for

$$D = \{(x, y) : x \in \mathbb{R}, y > 0\}, \quad A = \{(x, 0) : x > 0\}.$$

CAMBRIDGE

5 Let $(X_t)_{t \ge 0}$ be a Brownian motion in \mathbb{R}^2 . Let f be a continuous bounded probability density function on \mathbb{R}^2 and set

$$A_t = \int_0^t f(X_s) ds$$

- (a) Show that the set of times $\{t \ge 0 : |X_t| \le 1\}$ is unbounded almost surely.
- (b) Show that $\mathbb{E}(A_t/t) \to 0$ as $t \to \infty$.
- (c) Show that $A_t \to \infty$ as $t \to \infty$ almost surely.

6 Let M be a Poisson random measure on $(0, \infty)$ with intensity λdt , where $\lambda \in (0, \infty)$. Let $(Y_n : n \in \mathbb{N})$ be a sequence of independent random variables, independent of M and each uniformly distributed on [0, 1]. Given a measurable function g on [0, 1], define

$$X_t = X_t^g = \sum_{n=1}^{N_t} g(Y_n)$$

where $N_t = M(0, t]$.

- (a) Show that $(X_t)_{t \ge 0}$ is a Lévy process.
- (b) In the case where $g \ge 0$, show that

$$\mathbb{E}(X_t) = \lambda t \int_0^1 g(y) dy.$$

- (c) Find a necessary and sufficient condition on g for $(X_t)_{t \ge 0}$ to be a martingale.
- (d) Given continuous functions g_1 and g_2 on [0,1], find a necessary and sufficient condition on g_1 and g_2 for the processes $(X_t^{g_1})_{t \ge 0}$ and $(X_t^{g_2})_{t \ge 0}$ to be independent.

END OF PAPER