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1 Give the definition of a filtration ω on a group G. When is such a filtration ω a
p-valuation?

Suppose p is an odd prime. Show that the kernel of the natural group homomor-
phism GL2(Zp) → GL2(Zp/pZp) can be given a p-valuation.

Show that if ω1 and ω2 are p-valuations on a group G then

ω(g) = min(ω1(g), ω2(g)) for g ∈ G

defines a p-valuation on G.

2

What is the associated graded group gr G of a separated filtered group (G,ω)?

Explain how to use the commutator bracket on G to define a graded Lie algebra
structure on gr G that is non-abelian if there are non-identity elements x, y ∈ G with
ω(x−1y−1xy) = ω(x) + ω(y).

Show that if ω is a p-valuation then gr Gmay be viewed as a graded Fp[t]-Lie algebra
where Fp[t] is given its natural grading with deg t = 1.

Compute the Lie structure on gr G when

G =

{(

1 + a b
0 1

)∣

∣

∣

∣

a, b ∈ pZp

}

and

ω

((

1 + a b
0 1

))

= min(vp(a), vp(b)).

[Throughout this question you may assume the Hall-Petrescu Formula and any basic

commutator identities hold without proof provided you state them clearly.]
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3 Suppose that (G,ω) is a complete p-valued group of finite rank. Show that the
group algebra Zp[G] may be equipped with a filtration such that Zp[G]λ is the Zp-module
spanned by the set

Xλ =

{

pr(g1 − 1) · · · (gs − 1)

∣

∣

∣

∣

∣

r +

s
∑

i=1

ω(gi) > λ for g1, . . . , gs ∈ G

}

for each λ > 0. Prove that with respect to this filtration grZp[G] is naturally a graded
Fp[t]-algebra and there is a surjective graded Fp[t]-algebra homomorphism

UFp[t](gr G) → gr(Zp[G]).

Suppose now that p is odd and G is the kernel of the natural homomorphism
SL2(Zp) → SL2(Zp/pZp) equipped with the p-valuation coming from the natural p-adic
filtration on M2(Zp). By considering the ordered basis

(

E =

(

1 p
0 1

)

,H =

(

1 + p 0
0 (1 + p)−1

)

, F =

(

1 0
p 1

))

for G and writing e = E − 1, f = F − 1 and h = H − 1 in Zp[G] show that

ef − fe+ Zp[G]3 = ph+ Zp[G]3,

he− eh+ Zp[G]3 = 2pe+ Zp[G]3 and

hf − fh+ Zp[G]3 = −2pf + Zp[G]3.

4 Suppose that G is a complete p-valued group of finite rank with centre Z. Prove that
the centre of the completed group algebra FpG is isomorphic to the completed group al-
gebra FpZ. Thus compute the centre of FpG when G is the kernel of the natural homomor-
phismGL2(Zp) → GL2(Zp/pZp).
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5 What is the definition of a Qp-Banach algebra? What is required for a p-valued
group (G,ω) to be p-saturated?

Suppose that (G,ω) is a p-saturated p-valued group of finite rank. Explain why the
usual power series expansion for log(1 + T ) induces a function from G to the Qp-Banach

algebra Q̂pG. Prove that the image of this function is a Zp-Lie subalgebra of Q̂pG with
its usual commutator bracket.

Show moreover that if (g1, . . . , gd) is an ordered basis for G then log(g1), . . . , log(gd)

is a basis for P(Q̂pG) as a Qp-vector space.

[You may assume standard properties of the usual filtration on Q̂pG, the Hausdorff
series and the commutator Campbell–Baker–Hausdorff series.]

Describe log(G) when

G =

{(

1 + a b
0 1

)
∣

∣

∣

∣

a, b ∈ pZp

}

and

ω

((

1 + a b
0 1

))

= min(vp(a), vp(b)).
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