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1 (a) State and prove the Tarski-Vaught test.

(b) Let T be a complete theory with a monster model U. Let M be a model (that
is, M is small and M � U) and let ϕ(x, z) be an L-formula. Suppose there are finitely
many sets of the form ϕ(a,U), where a ∈ U. Prove that all these sets are definable over
M.

Suppose conversely that for all a ∈ U there is b ∈ M such that ϕ(a,U) = ϕ(b,U).
Does it follow that there are only finitely many sets of the form ϕ(a,U), where a ∈ U?

2 Recall that the theory Trg is the theory of random graphs in the language
Lgph = {R}, where R is a binary relation symbol.

(a) Prove that any finite partial embedding between two countable models of Trg

extends to an isomorphism.

(b) Let M |= Trg be countable, and let P1, . . . , Pn be a partition of M . Prove that
M is isomorphic to Pi for some i, where Pi is the structure induced by M on Pi.

3 Let T be a complete theory with a monster model U and let A ⊆ U be a (small)
subset.

(a) Prove that the following are equivalent:

(i) a ∈ acl(A);

(ii) a ∈ M for every model M containing A.

(b) Let N be a model. Prove that for every A ⊆ N there is a model M such that

acl(A) = M ∩N .

[You may assume the following result: if C is a finite set such that C ∩M 6= ∅ for every
model M containing A, then C ∩ acl(A) 6= ∅.]
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4 Let T be a strongly minimal L-theory. Work in the monster model U of T .

(a) Let f : U → U be an elementary map. Let b /∈ acl(dom(f)) and c /∈ acl(ran(f)).
Show that f ∪ {〈b, c〉} is elementary. Hence prove that if two models have the same
dimension then they are isomorphic. [You may assume standard properties of algebraic
closure.]

(b) Show that for every N � U such that |N| > |L|+ω the following are equivalent:

(i) N is saturated;

(ii) dim(N) = |N|.

[Hint: For (i) ⇒ (ii) consider a suitable type over a basis of N. For (ii) ⇒ (i) use a
suitable characterisation of saturation. ]
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