MAT3, MAMA

MATHEMATICAL TRIPOS Part III

Tuesday, 4 June, 2019 $-1:30~\mathrm{pm}$ to $3:30~\mathrm{pm}$

PAPER 142

CHARACTERISTIC CLASSES AND K-THEORY

Attempt no more than **TWO** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Draft 18th May 2023

CAMBRIDGE

1 For a space X, define the ring $K^0(X)$.

Let $\pi_i : E_i \to X$, i = 0, 1, be *d*-dimensional complex vector bundles over a finite CW-complex X of dimension k such that $E_0 \oplus \underline{\mathbb{C}}_X \cong E_1 \oplus \underline{\mathbb{C}}_X$. If $k \leq 2d$, prove that $E_0 \cong E_1$. [You may use any results about the classification of vector bundles provided they are clearly stated.]

Prove that two d-dimensional complex vector bundles over \mathbb{CP}^d having the same Chern classes are isomorphic. [You may use any description of the K-theory of \mathbb{CP}^d , and any properties of the Chern character provided they are clearly stated.]

2 What are the elementary symmetric polynomials e_i ? What are the power sum polynomials p_i ? Prove the identity

$$p_n - e_1 p_{n-1} + e_2 p_{n-2} - \dots + (-1)^{n-1} e_{n-1} p_1 + n(-1)^n e_n = 0.$$

If β denotes the Bockstein operation associated to the short exact sequence

$$0 \longrightarrow \mathbb{Z}/2 \longrightarrow \mathbb{Z}/4 \longrightarrow \mathbb{Z}/2 \longrightarrow 0,$$

show that $\beta(w_1(L)) = w_1(L)^2$ for any real line bundle $p: L \to X$ over a compact Hausdorff space X. Hence show that for any real vector bundle $\pi: E \to X$ over a compact Hausdorff space X the identity

$$\beta(w_j(E)) = w_1(E)w_j(E) + (j+1)w_{j+1}(E)$$

holds. [You may use that $\beta(ab) = \beta(a)b + a\beta(b)$, and any results from the course provided that they are clearly stated.]

3 What is the K-theory Euler class $e^{K}(E)$ of a complex vector bundle $\pi : E \to X$? What is the K-theory Gysin sequence associated to this vector bundle?

By constructing an appropriate vector bundle isomorphism, identify the K-theory class of the tangent bundle $T\mathbb{CP}^n$ in terms of the tautological line bundle $\gamma_{\mathbb{C}}^{1,n+1}$. Hence determine the K-theory Euler class $e^K(T\mathbb{CP}^n) \in K^0(\mathbb{CP}^n)$. [You may use any description of the K-theory of \mathbb{CP}^n without proof.]

Compute the ring $K^0(\mathbb{S}(T\mathbb{CP}^n))$ and the abelian group $K^{-1}(\mathbb{S}(T\mathbb{CP}^n))$.

UNIVERSITY OF

3

4 Define the Adams operations, and show that they give ring homomorphisms

$$\psi^{\ell}: K^0(X) \longrightarrow K^0(X)$$

which satisfy $\psi^{\ell}(L) = L^{\ell}$ when $\pi : L \to X$ is a complex line bundle. [You may use the splitting principle and any results from the theory of symmetric polynomials provided they are clearly stated.]

Let $\mathbb{CP}_k^{n+k} = \mathbb{CP}^{n+k}/\mathbb{CP}^{k-1}$ denote the truncated projective space,

$$i: S^{2k} = \mathbb{CP}_k^k \longrightarrow \mathbb{CP}_k^{n+k}$$

denote the inclusion, and suppose that *i* has a retraction $r : \mathbb{CP}_k^{n+k} \to S^{2k}$. By considering the Adams operation ψ^2 show that if n = 2 then k is divisible by 24.

END OF PAPER