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(a) Let A be a finite-dimensional algebra over a field k. LetM be a finite-dimensional
A-module. What does it mean to say that M is semisimple? What does it mean to say
that A is semisimple?

In the following, J(M) denotes the radical of M (the intersection of all maximal
submodules of M), and Soc(M) is the socle of M (the largest semisimple submodule of
M). You may use any appropriate equivalent descriptions of J(M) and Soc(M), without
proof, provided they are clearly stated.

Write down the classification of the indecomposable modules for a cyclic group
of order pn over a field of characteristic p. Identify the radical and socle of each
indecomposable module. (Only brief justifications are required.)

(b) Let A be a finite-dimensional algebra over a field k. For each A-moduleM , define
inductively Jn(M) := J(Jn−1(M)) and Socn(M)/Socn−1(M) := Soc(M/Socn−1M).
These submodules form chains, · · · ⊆ J2(M) ⊆ J(M) ⊆ M and 0 ⊆Soc(M) ⊆Soc2(M) ⊆
· · · , called the radical series and socle series, respectively.

Let U and V be finite-dimensional A-modules. Show that for each n, Jn(U ⊕ V ) =
Jn(U)⊕ Jn(V ) and Socn(U ⊕ V ) =Socn(U)⊕Socn(V ).

Deduce that if k is a field of characteristic p and G is a p-group then the regular
representation, kG, is indecomposable.

(c) Let A be a finite-dimensional algebra over a field k, and let M be an A-module.
Show that the radical series of M is the fastest descending series of submodules of M with
semisimple quotients, and the socle series of M is the fastest ascending series of M with
semisimple quotients. Show that the two series terminate, and if m and n are the least
integers for which Jm(M) = 0 and Socn(M) =M , then m = n.

(d) Let A = Tn(k) be the algebra of n× n lower triangular matrices.

(i) Construct a set of n non-isomorphic simple A-modules, S1, . . . , Sn. Also find
J(A).

(ii) Determine the radical series for the regular A-module AA.

(iii) Using an appropriate ordering of the simple modules appearing in (i), show
that J i(A)/J i+1(A) ∼= Si+1 ⊕ · · · ⊕ Sn.
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(a) Let G be a finite group and let k be a field of characteristic p. Assume k has all
|G|p′-th roots of unity. If g is a p′-element of G and M is a finite-dimensional kG-module,
define the Brauer character χM (g) of M . Show that the irreducible Brauer characters χSi

are linearly independent over C.

(b) Let (K,O, k) be a p-modular system where O is complete, and let G be a finite
group. Suppose that P and U are finite-dimensional kG-modules and that P is projective.
Show that

dimHomkG(P,U) =
1

|G|

∑
χP (g

−1)χU (g)

where the sum is over all p′-elements g ∈ G. [You may wish to begin by considering the
isomorphism HomkG(M,N) ∼=HomkG(M ⊗k N

∗, k) whenever M,N are finite-dimensional
kG-modules.]

(c) Let G be a finite group and suppose that k is a splitting field for G of
characteristic p. Let Cp′ be the vector space of class functions from the p′-classes to
C, endowed with the Hermitian inner product

〈φ,ψ〉 =
1

|G|

∑
φ(g)ψ(g)

summed over all p′-elements g ∈ G. Let S1, . . . , Sn be a complete list of non-isomorphic
simple kG-modules, with projective covers P1, . . . , Pn.

The Brauer characters χS1
, . . . , χSn of the simple modules form a basis for Cp′ , as

do also the Brauer characters χP1
, . . . , χPn of the indecomposable projective modules (you

are not asked to prove this). Show that these two bases are dual to each other with respect
to the bilinear form, in the sense that

〈χPi
, χSj

〉 = δi,j .

Why is the bilinear form on Cp′ non-degenerate?

(d) With the preceding notation, let X denote the table of Brauer character values
of simple kG-modules, let Π be the table of Brauer character values of indecomposable
projective modules, and let D be the diagonal matrix whose entries are 1/|CG(xi)|, as xi
ranges through representatives of the p′-classes.

Show that Π̄DXT = I and deduce that X̄TΠ is the diagonal matrix with entries
|CG(xi)|, where the xi are representatives of the p′-classes of elements of G. Hence show
that ∑

simple S

χS(g
−1)χPS

(h) = |CG(g)|

if g and h are conjugate, otherwise 0.
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(a) Let k be a field and G a finite group. Show that kG∗ ∼= kG as kG-modules.
Deduce that a finitely-generated kG-module P is projective if and only if P ∗ is projective
as a kG-module.

Show that finitely-generated projective kG-modules are the same as finitely-generated
injective kG-modules. Show also that each indecomposable projective kG-module has a
simple socle.

(b) Let P be an indecomposable projective module for a group algebra kG. Show
that P/J(P ) ∼=Soc(P ).

(c) For any kG-module M , define the fixed points of G on M to be MG :=
{m ∈ M : gm = m for all g ∈ G}. Define the fixed quotient of G on M to be
MG := M/〈(g − 1)m : m ∈ M, 1 6= g ∈ G〉. Evidently MG is the largest submodule
of M on which G acts trivially and MG is the largest quotient of M on which G acts
trivially.

If P is any projective kG-module and S is a simple kG-module, show that the
multiplicity of S in P/J(P ) equals the multiplicity of S in Soc(P ). Deduce that

dimPG = dimPG = dim(P ∗)G = dim(P ∗)G.

In the usual notation for projective covers, show also that for every simple kG-module S,
(PS)

∗ ∼= PS∗ .

(d) All modules in this part are to be finite-dimensional. Let M be an indecom-
posable kG-module, where k is a field, and let Pk be the projective cover of the trivial
module. Prove that

dim((
∑

g∈G

g) ·M)

is 1, if M ∼= Pk, otherwise it is 0. [Hint: first observe that (kG)
G = PG

k = k ·
∑

g∈G g. You
may wish to recall that Pk is injective and has socle isomorphic to k.]
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(a) Let R be a commutative ring with 1. Let G be a finite group and let H be
subgroup of G. In terms of commutative diagrams, what does it mean for an RG-module
to be (relatively) H-projective? State D. Higman’s criterion for relative projectivity of a
module. In what follows you may assume any equivalent definitions of relative projectivity
without proof.

(b) (i) If H is a subgroup of G and the index |G : H| is invertible in the ring R,
show that every RG-module is H-projective.

(ii) Suppose that H is a subgroup for which |G : H| is invertible in the ring R, and
letM be an RG-module. Show thatM is projective as an RG-module if and only ifM ↓GH
is projective as an RH-module.

(c) Let G =SL2(p). You may assume that the symmetric powers Sr(V2) are all the
simple FpG-modules when 0 6 r 6 p− 1, where V2 is the 2-dimensional space on which G
acts as invertible transformations of determinant 1. Show that on restriction to the Sylow
p-subgroup of upper unitriangular matrices, Sr(V2) is indecomposable of dimension r + 1
when 0 6 r 6 p − 1. Deduce the existence of an ordinary irreducible character of G of
degree p. [The classification of indecomposable modules for cyclic groups of prime order
may be assumed.]

(d) Recall that a ring A has finite representation type if and only if there are only
finitely many isomorphism classes of indecomposable A-modules. Let k be a field of
characteristic p and let P be a Sylow p-subgroup of a finite group G. Show that kG
has finite representation type if and only if kP has finite representation type [the Krull–
Schmidt theorem may be assumed]. Show further that kG has finite representation type
if and only if Sylow p-subgroups of G are cyclic. [If you wish, you may assume that if
G = Cp×Cp then there are infinitely many non-isomorphic indecomposable kG-modules.]

(e) LetM be an indecomposable kG-module (k a field). Show that there is a unique
conjugacy class of subgroups Q of G that are minimal with respect to the property that
M is Q-projective (Mackey’s restriction formula may be used, if required). Any such Q
is a called a vertex. Explain why the vertex of any indecomposable module is a p-group.
Find the vertex of the trivial kG-module, kG.
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(a) Let R be a finite-dimensional algebra. What does it mean to say that the R-
module M lies in the block (idempotent) e? If e is a block of R and if 0 → U → V →
W → 0 is a short exact sequence of R-modules, show that V belongs to e if and only if U
and W belong to e.

(b)Let R be either O a discrete valuation ring with residue field of characteristic p
or k, a field. Define the defect group of a block of RG and show the defect groups of a
block are all conjugate.

(c) Consider the simple group G=GL3(2) of 3×3 nonsingular matrices over F2. You
may assume from group theory that G has order 168 = 8.3.7 and that G has six conjugacy
classes. Its ordinary character table is given below. The numbers that label the conjugacy
classes of elements in the top row indicate the order of the elements:

g 1 2 4 3 7A 7B
|CG(g)| 168 8 4 3 7 7

1 1 1 1 1 1
3 −1 1 0 α ᾱ
3 −1 1 0 ᾱ α
6 2 0 0 −1 −1
7 −1 −1 1 0 0
8 0 0 −1 1 1

where α = η + η2 + η4 and η = e2πi/7.

(i) Let k be a splitting field for G of characteristic 2. Compute the table of Brauer
characters of simple kG-modules. Identify any blocks of defect 0. [Hint: show that the
natural 3-dimensional space of column vectors on which G acts is a 2-modular simple
representation.]

(ii) Find the decomposition matrix and Cartan matrix of G for the prime 2.

(iii) Write down the table of Brauer characters of projective indecomposable kG-
modules.

(iv) Express 8⊗3 as a direct sum of indecomposable modules (where 8 and 3 denote
the simple kG-modules of those dimensions). [Hint: show that 8 ⊗ 3 is projective, hence
is a direct sum of projective indecomposable modules; then consider inner products of
characters.]
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(a) Let (K,O, k) be a splitting p-modular system such that O is complete, and let
G be a group of order pdq where q is prime to p. Let M be a KG-module of dimension
n, containing an O-form W . Write W̄ = k ⊗O W = W/pW for the p-modular reduction.
Consider the five statements below, and prove the four implications (ii) =⇒ (iii), (ii)
=⇒ (iv), (iii) =⇒ (v) and (v) =⇒ (i).

(i) pd divides n and M is a simple KG-module.

(ii) The homomorphismOG→EndO(W ) that gives the action ofOG onW identifies
EndO(W ) ∼=Mn(O) with a ring direct factor of OG.

(iii) M is a simple KG-module and W is a projective OG-module.

(iv) The homomorphism kG →Endk(W̄ ) identifies Endk(W̄ ) ∼= Mn(k) with a ring
direct factor of kG.

(v) As a kG-module W̄ is simple and projective.

(b) Let k be a field of characteristic p that is a splitting field for G and all of its
subgroups and let D be a p-subgroup of G.

(i) Define the Brauer morphism, explaining all terms appearing in your definition.

(ii) Show that the following diagram commutes:

(kG)D
β
→ kCG(D)

↓τ ↓τ ′

(kG)GD
β′

→ (kCG(D)
NG(D)
D

where β, β′ are appropriate Brauer morphisms and τ, τ ′ are appropriate transfer maps.

(c) Consider the group G = A5 and let k be a splitting field of characteristic 5.
Then X, the 5-modular simple Brauer character table and Y , the decomposition matrix
of G at the prime 5 are given below with obvious notation (you are not asked to verify
these).

X =

1 (12)(34) (123)

φ1 1 1 1
φ2 3 −1 0
φ3 5 1 −1

Y =

φ1 φ2 φ3
χ1 1 0 0
χ3A 0 1 0
χ3B 0 1 0
χ4 1 1 0
χ5 0 0 1

For each defect group D, find the normaliser N , and describe the Brauer correspondence
between certain blocks of G and certain blocks of N .

END OF PAPER
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