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1 (a) State and prove Hasse’s theorem.

(b) Let E/F3 be the elliptic curve y2 = x3 − x − 1. Determine for which integers
r > 1 we have #E(F3r) = 3r + 1. [You may assume that if φ is an endomorphism of E
then φ2 − [trφ]φ+ [deg φ] = 0 where trφ = deg(1 + φ)− 1− deg φ.]

2 Let D > 1 be a square-free integer and E/Q the elliptic curve y2 = x3 −D2x.

(a) Let p be a prime with p ≡ 3 (mod 4). Let Ẽns(Fp) be the group of non-singular

points on the reduction of E mod p. Prove that Ẽns(Fp) is either cyclic of order p or
non-cyclic of order p+ 1.

(b) What is a formal group, and what is an isomorphism of formal groups? State
and prove conditions under which multiplication-by-n is an isomorphism of formal groups.

(c) What is a congruent number? Highlighting the roles played by parts (a) and
(b), prove that D is a congruent number if and only if rankE(Q) > 1.

3 Let E/Q be the elliptic curve y2 = x(x+ 1)(x+ 4).

(a) Let P1 = (−1, 0) and P2 = (−2, 2). Compute P1 + P2 and 2P2.

(b) By using Hasse’s theorem, or otherwise, exhibit two primes p of good reduction
for which #Ẽ(Fp) = 8. Hence compute the torsion subgroup of E(Q).

(c) Compute the rank of E(Q).

(d) Show that if r, s, t ∈ Q∗ with r2, s2, 1, t2 in arithmetic progression then
(−2s2, 2rst) ∈ E(Q). Deduce the result of Euler that there are no non-constant four
term arithmetic progressions of square numbers.

4 Write an essay on Kummer theory and its applications to the proof of the weak
Mordell-Weil theorem.
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5 (a) Define the height H(P ) of a point P ∈ PN (Q). Show that if F : P1 → P1 is a
Q-rational morphism of degree d, then there exist constants c1, c2 > 0 such that

c1H(P )d 6 H(F (P )) 6 c2H(P )d

for all P ∈ P1(Q).

(b) Let E/Q be an elliptic curve. Define the logarithmic height h : E(Q) → R.
Show that there is a unique function ĥ : E(Q) → R satisfying

(i) |h(P ) − ĥ(P )| is bounded for all P ∈ E(Q),

(ii) ĥ(mP ) = m2ĥ(P ) for all m ∈ Z and P ∈ E(Q),

(iii) ĥ(P + T ) = ĥ(P ) for all T ∈ E(Q)tors and P ∈ E(Q).

(c) For B > 0 we put N(B) = #{P ∈ E(Q) : ĥ(P ) 6 B}. Show that N(B) < ∞
and that if N(B)/

√
B → ∞ as B → ∞ then rankE(Q) > 2.
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