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(i) Determine for each of the following concepts whether they are “upwards absolute
but not downwards absolute” (U), “downwards absolute but not upwards absolute”
(D), “both upwards and downwards absolute” (U+D), or “neither upwards nor
downwards absolute” (N) between transitive models of ZFC. [No proofs are needed.]

(a) “x is infinite”;

(b) “x is a cardinal”;

(c) “x is a partial order”;

(d) “x is a subset of N”;

(e) “x is countable”; and

(f) “x is a cardinal with cf(x) < x”.

(ii) Prove that if α is a countable ordinal, then Vα 6|= ZFC.

(iii) Let M be a uncountable transitive set model of ZFC. Show that M must contain
uncountably many ordinals.

(iv) Let T ⊇ ZFC be any complete extension of the axioms of ZFC in the language of set
theory, i.e., for all sentences ψ, either ψ ∈ T or ¬ψ ∈ T . We say that a set model
M |= T is a Paris model if every ordinal inM is definable, i.e., for every α ∈M such
that M |=“α is an ordinal”, there is a formula ϕ such that M |= ∀z(z = α↔ ϕ(z)).
A model of set theory is called rigid if every automorphism is the identity. Prove
the following statements:

(a) If there is a wellfounded model of T , then all Paris models of T are
wellfounded.

(b) If there is a wellfounded model of T , then all Paris models of T are rigid.
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In the following, work under the assumption that there is a transitive set modelM of ZFC.

(i) Let A ∈M . Give the definition of D(A), the definable power set of A.

[You may assume that Def(A,n) ⊆ An is already defined.]

(ii) Let L be the constructible universe inside M . Show that L satisfies the power set
axiom.

(iii) Explain why in general the set D(A) is not the constructible power set of A.

[You may use basic properties of the constructible hierarchy in your argument if you

state them explicitly.]

(iv) For any set A ∈ M , let L(A) be the constructible universe built from tcl(A) inside
M . Show that the following statement does not in general hold: if A ⊆ ω2, then
L(A) |= CH.

[In this argument, you may use the consistency results from forcing proved in class,

e.g., that there is a transitive model of ZFC+ 2ℵ0=ℵ2.]
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3 In this question, work under the assumption thatM is a countable transitive model
of ZFC.

(i) Let p ∈ P ∈M . Define the notions

(a) D is dense below p,

(b) G is a P-generic filter over M , and

(c) P has the κ-chain condition.

(ii) Prove that if M |=“P has the κ-chain condition” and M |=“κ is regular”, then P

preserves cardinals > κ.

(iii) Let  be the semantic forcing relation and ∗ be the syntactic forcing relation. Let
ϕ be a sentence in the forcing language. Show that p  ϕ if and only if p ∗ ϕ.

[You may use the Forcing Theorem without proof and you may also assume the

following equivalence: p ∗ ϕ if and only if {r ; r ∗ ϕ} is dense below p if and only

if for every r 6 p, r ∗ ϕ.]

(iv) Let P ∈M and G be P-generic over M . Show that M [G] |= Separation.

(v) Let κ ∈ M be a cardinal in M . Define P := {p ; p is a partial function with
dom(p) ⊆ κ × N finite, ran(p) ⊆ κ, and if (α, n) ∈ dom(p), then p(α, n) < α}. Let
G be P-generic over M .

(a) Show that if λ < κ is a cardinal in M , then λ is countable in M [G].

(b) Show that if κ is regular in M , then P has the κ-chain condition.

(c) Show that κ is regular in M if and only if M [G] |= κ = ℵ1.
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