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1

Define the notions of regular epimorphism and strong epimorphism, and show that
every regular epimorphism is strong.

Let C be a category with pullbacks and coequalizers, in which any pullback of
a regular epimorphism is epic. Show that every morphism of C factors as a regular
epimorphism followed by a monomorphism, and deduce that every strong epimorphism is
regular.

Let Cat denote the category of small categories and functors between them. Give,
with brief justification, an example of a strong epimorphism in Cat which is not regular.
Does every morphism in Cat factor (a) as a regular epi followed by a mono, or (b) as a
strong epi followed by a mono? Justify your answers.

[You may assume without proof the result that monomorphisms are always stable
under pullback, and the fact that monomorphisms in Cat are injective functors.]

2

Explain what is meant by a congruence on a category C, and by the quotient category
C/ ∼ where ∼ is a congruence on C.

Let C be a category with finite products, and let Φ be a filter of subobjects of the
terminal object 1 of C (i.e. a family such that 1 ∈ Φ, (U, V ∈ Φ ⇒ U × V ∈ Φ) and
(U ∈ Φ, U 6 V ⇒ V ∈ Φ)). For objects A and B of C, we define a Φ-map A → B to be
an equivalence class of morphisms A × U → B with U ∈ Φ, where two such morphisms
A× U → B and A× V → B are equivalent iff there exists W ∈ Φ with W 6 U × V such
that

A×W > A× V

∨ ∨
A× U > B

commutes. Verify that this is indeed an equivalence relation, and that the objects and
Φ-maps of C form a category CΦ.

We define a functor PΦ : C → CΦ by setting PΦ(A) = A, and taking PΦ(f : A → B)

to be the equivalence class of A× 1 ∼= A
f
→ B. Show that CΦ has and PΦ preserves finite

products. If C is cartesian closed, show also that CΦ is cartesian closed and PΦ preserves
exponentials.

Is CΦ (isomorphic to) a quotient of C by a congruence? Justify your answer.
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Explain briefly how an adjunction between functors F : C → D and G : D → C may
be specified by a suitable pair of natural transformations η : 1C → GF and ǫ : FG → 1D.

Let F1, F2 : C ⇉ D be functors having right adjoints G1, G2 respectively. Show
that there is a bijection between natural transformations α : F1 → F2 and natural
transformations α : G2 → G1.

Now suppose F : C → C carries a monad structure F and also has a right adjoint
G. Show that G carries a comonad structure G for which the category of G-coalgebras is
isomorphic to the category of F-algebras. Deduce that if M is a monoid then the forgetful
functor [M,Set] → Set is comonadic.

[You may assume that the bijection constructed in the second part is contravariantly
functorial, in the sense that if (α, β) is a composable pair of natural transformations
between left adjoints then αβ = β α, and also that Lα = αR if (L ⊣ R).]

4

Explain briefly what is meant by the monad induced by an adjunction, and by an
algebra for a monad.

Given an adjunction (F : C → D ⊣ G : D → C) inducing a monad T on C, define the
Eilenberg–Moore comparison functor K : D → CT, and show that if D has coequalizers of
reflexive pairs then K has a left adjoint L. Explain what is meant by the monadic length

of such an adjunction (F ⊣ G).

Let C0 = Set, and for n > 0 let Cn be the category of sets A equipped with n
partial unary operations α1, α2, . . . , αn : A ⇁ A such that α1(a) is defined for all a ∈ A,
and for i > 1 αi(a) is defined if and only if (αi−1(a) is defined and) αi−1(a) = a. Show
that the forgetful functor Cn+1 → Cn has a left adjoint for any n [hint: the free Cn+1-

object on a Cn-object A may be taken to have underlying set A × {0} ∪ An × N, where

An = {a ∈ A | αn(a) = a}.] Show also that, for any m < n, the monad on Cm induced by
the composite adjunction Cm ⇄ Cn coincides with that induced by Cm ⇄ Cm+1. Assuming
the result that the latter adjunction is monadic, deduce that C0 ⇄ Cn has monadic length
n.
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Let C be a category with finite products. What does it mean to say that an object
of C is exponentiable? Show that the class of exponentiable objects of C is closed under
finite products. Show also that if C has an object which is both terminal and initial, then
it is (up to isomorphism) the only exponentiable object.

Recall that a topological space X is said to satisfy the T0 axiom if, for any two
distinct points x, y of X, there is an open set containing just one of x and y. Show that
any T0-space X is homeomorphic to a subspace of a power

∏
g∈G S of the Sierpiński space

S, i.e. the set {0, 1} with {1} open but {0} not open. [Hint: take G to be the set of

continuous maps X → S.] Deduce that there is an equalizer diagram

X > >
∏

g∈G

S >
>

∏

h∈H

S

for some sets G and H.

Hence show that a space E is exponentiable in the full subcategory Top0 ⊆ Top of
T0-spaces iff the functor Top0 (−× E,S) is representable.

[You may assume that Top0 is closed under products in Top, and that its regular
monomorphisms are subspace inclusions.]

6

State the Yoneda Lemma (including the ‘naturality’ assertion). Deduce that the
Yoneda embedding C → [Cop,Set] is full and faithful, for any locally small category C.

Sketch the proof that [Cop,Set] is a topos when C is small. Hence show that

(a) every small category with finite limits is equivalent to a full subcategory of a topos
closed under finite limits;

(b) every small cartesian closed category is equivalent to a full subcategory of a topos
closed under finite products and exponentials;

(c) every small category with finite products and splittings of idempotents is equivalent
to the full subcategory of tiny objects of a topos, i.e. objects A such that (−)A has
a right adjoint.

[For (c), you may assume the result that if C has splittings of idempotents then the
representable functors are exactly the objects F of [Cop,Set] for which [Cop,Set] (F,−)
preserves all small colimits.]

END OF PAPER
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