

1

Define the notions of *regular epimorphism* and *strong epimorphism*, and show that every regular epimorphism is strong.

Let \mathcal{C} be a category with pullbacks and coequalizers, in which any pullback of a regular epimorphism is epic. Show that every morphism of \mathcal{C} factors as a regular epimorphism followed by a monomorphism, and deduce that every strong epimorphism is regular.

Let **Cat** denote the category of small categories and functors between them. Give, with brief justification, an example of a strong epimorphism in **Cat** which is not regular. Does every morphism in **Cat** factor (a) as a regular epi followed by a mono, or (b) as a strong epi followed by a mono? Justify your answers.

[You may assume without proof the result that monomorphisms are always stable under pullback, and the fact that monomorphisms in **Cat** are injective functors.]

2

Explain what is meant by a *congruence* on a category \mathcal{C} , and by the *quotient category* \mathcal{C}/\sim where \sim is a congruence on \mathcal{C} .

Let \mathcal{C} be a category with finite products, and let Φ be a filter of subobjects of the terminal object 1 of \mathcal{C} (i.e. a family such that $1 \in \Phi$, $(U, V \in \Phi \Rightarrow U \times V \in \Phi)$ and $(U \in \Phi, U \leq V \Rightarrow V \in \Phi)$). For objects A and B of \mathcal{C} , we define a Φ -map $A \rightarrow B$ to be an equivalence class of morphisms $A \times U \rightarrow B$ with $U \in \Phi$, where two such morphisms $A \times U \rightarrow B$ and $A \times V \rightarrow B$ are equivalent iff there exists $W \in \Phi$ with $W \leq U \times V$ such that

$$\begin{array}{ccc} A \times W & \longrightarrow & A \times V \\ \downarrow & & \downarrow \\ A \times U & \longrightarrow & B \end{array}$$

commutes. Verify that this is indeed an equivalence relation, and that the objects and Φ -maps of \mathcal{C} form a category \mathcal{C}_Φ .

We define a functor $P_\Phi: \mathcal{C} \rightarrow \mathcal{C}_\Phi$ by setting $P_\Phi(A) = A$, and taking $P_\Phi(f: A \rightarrow B)$ to be the equivalence class of $A \times 1 \cong A \xrightarrow{f} B$. Show that \mathcal{C}_Φ has and P_Φ preserves finite products. If \mathcal{C} is cartesian closed, show also that \mathcal{C}_Φ is cartesian closed and P_Φ preserves exponentials.

Is \mathcal{C}_Φ (isomorphic to) a quotient of \mathcal{C} by a congruence? Justify your answer.

3

Explain briefly how an adjunction between functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ may be specified by a suitable pair of natural transformations $\eta: 1_{\mathcal{C}} \rightarrow GF$ and $\epsilon: FG \rightarrow 1_{\mathcal{D}}$.

Let $F_1, F_2: \mathcal{C} \rightleftarrows \mathcal{D}$ be functors having right adjoints G_1, G_2 respectively. Show that there is a bijection between natural transformations $\alpha: F_1 \rightarrow F_2$ and natural transformations $\overline{\alpha}: G_2 \rightarrow G_1$.

Now suppose $F: \mathcal{C} \rightarrow \mathcal{C}$ carries a monad structure \mathbb{F} and also has a right adjoint G . Show that G carries a comonad structure \mathbb{G} for which the category of \mathbb{G} -coalgebras is isomorphic to the category of \mathbb{F} -algebras. Deduce that if M is a monoid then the forgetful functor $[M, \mathbf{Set}] \rightarrow \mathbf{Set}$ is comonadic.

[You may assume that the bijection constructed in the second part is contravariantly functorial, in the sense that if (α, β) is a composable pair of natural transformations between left adjoints then $\overline{\alpha\beta} = \overline{\beta}\overline{\alpha}$, and also that $\overline{L\alpha} = \overline{\alpha}_R$ if $(L \dashv R)$.]

4

Explain briefly what is meant by the *monad* induced by an adjunction, and by an *algebra* for a monad.

Given an adjunction $(F: \mathcal{C} \rightarrow \mathcal{D} \dashv G: \mathcal{D} \rightarrow \mathcal{C})$ inducing a monad \mathbb{T} on \mathcal{C} , define the Eilenberg–Moore comparison functor $K: \mathcal{D} \rightarrow \mathcal{C}^{\mathbb{T}}$, and show that if \mathcal{D} has coequalizers of reflexive pairs then K has a left adjoint L . Explain what is meant by the *monadic length* of such an adjunction $(F \dashv G)$.

Let $\mathcal{C}_0 = \mathbf{Set}$, and for $n > 0$ let \mathcal{C}_n be the category of sets A equipped with n partial unary operations $\alpha_1, \alpha_2, \dots, \alpha_n: A \rightarrow A$ such that $\alpha_1(a)$ is defined for all $a \in A$, and for $i > 1$ $\alpha_i(a)$ is defined if and only if $(\alpha_{i-1}(a) \text{ is defined and}) \alpha_{i-1}(a) = a$. Show that the forgetful functor $\mathcal{C}_{n+1} \rightarrow \mathcal{C}_n$ has a left adjoint for any n [hint: the free \mathcal{C}_{n+1} -object on a \mathcal{C}_n -object A may be taken to have underlying set $A \times \{0\} \cup A_n \times \mathbb{N}$, where $A_n = \{a \in A \mid \alpha_n(a) = a\}$.] Show also that, for any $m < n$, the monad on \mathcal{C}_m induced by the composite adjunction $\mathcal{C}_m \rightleftarrows \mathcal{C}_n$ coincides with that induced by $\mathcal{C}_m \rightleftarrows \mathcal{C}_{m+1}$. Assuming the result that the latter adjunction is monadic, deduce that $\mathcal{C}_0 \rightleftarrows \mathcal{C}_n$ has monadic length n .

5

Let \mathcal{C} be a category with finite products. What does it mean to say that an object of \mathcal{C} is *exponentiable*? Show that the class of exponentiable objects of \mathcal{C} is closed under finite products. Show also that if \mathcal{C} has an object which is both terminal and initial, then it is (up to isomorphism) the only exponentiable object.

Recall that a topological space X is said to satisfy the *T_0 axiom* if, for any two distinct points x, y of X , there is an open set containing just one of x and y . Show that any T_0 -space X is homeomorphic to a subspace of a power $\prod_{g \in G} S$ of the *Sierpiński space* S , i.e. the set $\{0, 1\}$ with $\{1\}$ open but $\{0\}$ not open. [Hint: take G to be the set of continuous maps $X \rightarrow S$.] Deduce that there is an equalizer diagram

$$X \longrightarrow \prod_{g \in G} S \rightrightarrows \prod_{h \in H} S$$

for some sets G and H .

Hence show that a space E is exponentiable in the full subcategory $\mathbf{Top}_0 \subseteq \mathbf{Top}$ of T_0 -spaces iff the functor $\mathbf{Top}_0(- \times E, S)$ is representable.

[You may assume that \mathbf{Top}_0 is closed under products in \mathbf{Top} , and that its regular monomorphisms are subspace inclusions.]

6

State the Yoneda Lemma (including the ‘naturality’ assertion). Deduce that the Yoneda embedding $\mathcal{C} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is full and faithful, for any locally small category \mathcal{C} .

Sketch the proof that $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ is a topos when \mathcal{C} is small. Hence show that

- (a) every small category with finite limits is equivalent to a full subcategory of a topos closed under finite limits;
- (b) every small cartesian closed category is equivalent to a full subcategory of a topos closed under finite products and exponentials;
- (c) every small category with finite products and splittings of idempotents is equivalent to the full subcategory of tiny objects of a topos, i.e. objects A such that $(-)^A$ has a right adjoint.

[For (c), you may assume the result that if \mathcal{C} has splittings of idempotents then the representable functors are exactly the objects F of $[\mathcal{C}^{\text{op}}, \mathbf{Set}]$ for which $[\mathcal{C}^{\text{op}}, \mathbf{Set}](F, -)$ preserves all small colimits.]

END OF PAPER