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(a) Define a complex manifold and a holomorphic vector bundle.

(b) Let J be the induced almost complex structure on a complex manifold X,
considered as a bundle endomorphism J : (TX)C → (TX)C. Let TX(1,0) denote the
subbundle of (TX)C whose fibres are eigenspaces of J with eigenvalue i. Show that
TX(1,0) naturally admits the structure of a holomorphic vector bundle.

(c) Suppose Y is a smooth analytic hypersurface of X. The normal bundle of Y
in X is the holomorphic vector bundle NY/X on Y which is the cokernel of the inclusion

TY (1,0) →֒ TX(1,0)|Y . Prove that

NY/X
∼= O(Y )|Y .

(d) Under the same assumptions as part (c), show that

KY
∼= (KX ⊗O(Y ))|Y ,

where KX and KY are the top exterior powers of T ∗X(1,0) and T ∗Y (1,0) respectively.
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(a) Let X be a topological space, F a sheaf on X and U an open cover of X.
Define the groups Cp(U ,F), the boundary maps δ : Cp(U ,F) → Cp+1(U ,F) and the Čech
cohomology groups Ȟj(U ,F).

(b) Let S be a Riemann surface. A principal part at x ∈ S is a Laurent series, valid
in a neighbourhood of x, of the form

P =

n∑

k=1

akz
−k

with ak ∈ C and z a local co-ordinate at x. Let x1, . . . , xd ∈ S and let P1, . . . , Pd be
principal parts at x1, . . . , xd respectively.

(i) Show how the P1, . . . , Pd can be used to form an element (Pjl) ∈ C1(U ,O)
for an open cover U of S such that δ(Pjl) = 0.

(ii) Suppose that the Čech cohomology group H1(S,O) vanishes. Without
appealing to Dolbeault’s Theorem, show that there is a meromorphic
function F on S with principal part Pm at xm for all m = 1, . . . , d.

(c) Let X be a complex manifold. Show that

Hq(X,Ωp) ∼= Hp,q
∂̄

(X).
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(a) Let Div(X) be the group of divisors on a complex manifold X. Show that there
is an isomorphism

Div(X) ∼= H0(X,K∗/O∗).

(b) Using the exact sequence

0 → O∗ → K∗ → K∗/O∗ → 0,

show that there is a morphism Div(X) → Pic(X) whose kernel is the group of principal
divisors on X. [You may use the result that Pic(X) ∼= H1(X,O∗).]

(c) Define what it means for a line bundle L ∈ Pic(X) to be ample, and what it
means for L to be positive. State the Kodaira Embedding Theorem.

(d) Using the Kodaira Embedding Theorem or otherwise, show that if X is
projective, any element of L ∈ Pic(X) can be written L ∼= H1⊗H∗

2 with H1,H2 ∈ Pic(X)
very ample line bundles.

(e) When X is projective, show that the morphism Div(X) → Pic(X) constructed
in part (b) is surjective. [Results from the course may be used provided they are stated
correctly.]
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Suppose that E is a holomorphic vector bundle with a Hermitian metric h.

(a) Define a connection on E. Define what it means for a connection to be compatible
with the Hermitian metric h, and what it means for a connection to be compatible with
the holomorphic structure.

(b) In a unitary frame, what conditions on the connection matrix does compati-
bility with a Hermitian metric impose? In a holomorphic frame, what conditions does
compatibility with the holomorphic structure impose? [It is not necessary to prove your
assertions.]

(c) Prove that there is a unique connection which is compatible with both the
Hermitian metric and the holomorphic structure. This connection is called the Chern
connection.

(d) Let D1,D2 be connections on E with D1 − D2 = a for some a ∈ A1
C
(EndE).

Show that the curvatures satisfy

FD1
= FD2

+D2(a) + a ∧ a,

where D2(a) ∈ A2
C
(EndE) is defined using the induced connection on EndE and a ∧ a is

given by exterior product in the form part and evaluation in EndE. [You may use that
for the induced connection on EndE one has

(Da)s = D(as) + aDs,

for any section s of E and a ∈ A1
C
(EndE).]

(e) Suppose that D1 and D2 are the Chern connections for Hermitian metrics h1
and h2 on E respectively, so that FD1

, FD2
∈ A1,1

C
(EndE) and a ∈ A1,0

C
(EndE). Show

that
FD1

− FD2
= ∂̄a.

[You may assume that the connection on EndE induced from the Chern connection on E
is the Chern connection on EndE]
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Let (X,ω) be a compact Kähler manifold.

(a) Define the Laplacians ∆d,∆∂̄ and ∆∂ .

(b) Show that ∆d = 2∆∂̄ = 2∆∂ . [You may assume any of the Kähler Identities
provided they are stated correctly.]

A form α is called harmonic if ∆dα = 0. By part (b) this is equivalent to ∆∂̄α = 0.
Let Hp,q(X) denote the space of harmonic (p, q)-forms on X with respect to ω.

(c) State the Hodge Decomposition Theorem for Kähler manifolds.

(d) Let α be a d-closed (p, q)-form on X. Prove that α = ∂∂̄β for some (p−1, q−1)-
form β if and only if α is orthogonal to Hp,q(X).

END OF PAPER
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