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1 In this question, standard results on (co)homology of cell complexes and of
manifolds may be used without proof if clearly stated.

1. Let n > 0 and f : Sn ×Sn → Sn ×Sn be a homeomorphism. When n is even, show
there are only finitely many possibilities for the action of f on Hn(Sn × Sn;Z). Is
the hypothesis that n be even necessary? Justify your answers.

2. Let φ : S2 → S2 be a map of degree p. Let X = CP2∪φ e
3 be obtained by attaching

a 3-cell to a projective line CP1 ⊂ CP2 along φ. Let Y = (S2∪φ e
3)∨S4. Prove that

H∗(X;Z) ∼= H∗(Y ;Z) as rings, but that X and Y are not homotopy equivalent.

3. Let K be the Klein bottle and Y = RP2 ∨ S1. Prove that H∗(K;Z) ∼= H∗(Y ;Z)
as rings. Is there a map Y → K which induces an isomorphism on cohomology?
Justify your answer.
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2 Let (A,6) be a partially ordered set with the property that, for any a, b ∈ A, there
is some c ∈ A with a 6 c and b 6 c. Define a direct system of abelian groups {Ga | a ∈ A}
associated to the poset A, and the direct limit lim−→a

Ga of such a system.

1. Show that, for a sequence {a0, a1, a2, . . .} of integers ai, the direct limit of the system

Z
a0−→ Z

a1−→ Z
a2−→ Z

a3−→ · · ·

is the subgroup of the rationals Q consisting of those elements whose denominator
divides into some product of the aj’s.

2. LetX = ∪a∈AXa be a topological space with the property that for every compact set
K ⊂ X there is some a ∈ A (depending on K) such that K lies inside the subspace
Xa. Prove that Hi(X;Z) = lim

−→a
Hi(Xa;Z). Deduce that Hi(X;Z) is countable for

any i and any open subset X ⊂ RN . Construct a connected open subset X ⊂ RN

for which H1(X;Z) is uncountable, justifying your answer.

3. The “mapping telescope” of a sequence of spaces and maps

X0

f0
−→ X1

f1
−→ X2

f2
−→ X3

f3
−→ · · ·

is the quotient of the disjoint union ⊔i(Xi × [i, i+ 1]) by the equivalence relation

Xi × [i, i+ 1] ∋ (xi, i+ 1) ∼ (fi(xi), i+ 1) ∈ Xi+1 × [i+ 1, i + 2].

By considering a suitable mapping telescope, prove that there is a topological space
X with reduced homology

H̃i(X;Z) =

{
Qsq i = n

0 i 6= n

where Qsq ⊂ Q is the subgroup of rationals with square-free denominator.
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3 The lens space L(p) = S3/(Z/p) is the quotient of the unit sphere S3 ⊂ C2 by the
diagonal action of the group of p-th roots of unity. For a coefficient ring R, explain what
it means for a real vector bundle E → X to be R-oriented, define the Thom class, and
state the Gysin sequence for such an R-oriented bundle. Hence, or otherwise, compute
the cohomology of L(p) (additively) with both Z and Z/p coefficients.

For any space X, let β : Hj(X;Z/p) → Hj+1(X;Z/p) be the composite of the

boundary map in the exact sequence associated to the short exact sequence 0 → Z
p

−→ Z →
Z/p → 0 with the reduction mod p map. Prove that β : H1(L(p);Z/p) → H2(L(p);Z/p)
is an isomorphism.

Let [L(p)] ∈ H3(L(p);Z/p) be a generator coming from a choice of orientation of
L(p). Let a ∈ H1(L(p);Z/p) be a generator, and define t(a) = 〈a · β(a), [L(p)]〉 ∈ Z/p
(where · denotes cup product). If a′ ∈ H1(L(p);Z/p) is another generator, how are t(a′)
and t(a) related? Deduce that if L(p) admits an orientation-reversing homotopy equiva-
lence, then −1 is a quadratic residue mod p, i.e. −1 ≡ n2 modulo p, for some integer n.

4 For a space X with finite-dimensional rational cohomology, and a map f : X → X,
we define the Lefschetz number of f by

L(f) =
∑

i

(−1)itr(f∗ : H i(X;Q) → H i(X;Q)).

For a closed smooth oriented manifold M , give a formula for the cohomology class ε∆,
where ∆ ⊂ M × M is the diagonal submanifold, and deduce the Lefschetz fixed point
theorem. (Standard properties of the classes εY may be assumed if carefully stated.)

Let M = S1 ⊔ S1 ⊔ S1 be a disjoint union of three circles, and let f : M → M be a
homeomorphism without fixed points. Prove that the trace of the action of f on H1(M ;Z)
belongs to {0, 1, 3}.

Let (N, ∂N) be a compact smooth manifold with non-empty boundary ∂N 6= ∅.
Let M = N ∪∂N N be the closed smooth manifold obtained by doubling N . Given a map
f : N → N for which f(∂N) ⊂ ∂N , state and prove a relationship between the Lefschetz
numbers L(f), L(f |∂N ) and L(F ), where F : M → M is an obvious “double” of f .

Now let N be the complement of three disjoint open discs in the 2-sphere S2 and let
f : N → N be a homeomorphism. Prove that if f is fixed-point free, then f cyclically per-
mutes the three boundary components ofN .
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