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Let X be a scheme, let f ∈ Γ(X,OX), and define Xf to be the subset of points
x ∈ X such that the germ fx of f at x is not contained in the maximal ideal mx of the
local ring OX,x.

(a) If U = SpecB is an open affine subscheme of X, and if f̄ ∈ B = Γ(U,OX |U ) is
the restriction of f , show that U ∩Xf = D(f̄). Conclude that Xf is an open subset of X.

(b) Assume that X is quasi-compact (i.e., every open cover of X has a finite
subcover). Let A = Γ(X,OX ), and let a ∈ A be an element whose restriction to Xf

is 0. Show that for some n > 0, fna = 0.

(c) Now assume that X has a finite cover by open affines Ui such that each
intersection Ui ∩ Uj is quasi-compact. Let b ∈ Γ(Xf ,OXf

). Show that for some n > 0,
fnb is the restriction of an element of A.

(d) With the hypothesis of (c), conclude that Γ(Xf ,OXf
) = Af , where Af as usual

denotes the localization of the ring A at the multiplicative subset {1, f, f2, . . .}.
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(a) Let p be a prime number, Fp the field with p elements, and i : SpecFp → SpecZ
the canonical morphism. We say a ring A is of characteristic p if p · 1 = 0 in A. Prove
that for a scheme X the following are equivalent:

(i) For every open subset U ⊆ X, the ring Γ(U,OX) has characteristic p.

(ii) The ring Γ(X,OX ) has characteristic p.

(iii) The scheme morphism X → SpecZ factors through i.

In any of these cases, we say that X is of characteristic p.

(b) Let X be a scheme of characteristic p. Show that there exists a unique morphism
F : X → X which is the identity on scheme-theoretic points and on an open set U ⊆ X,
F#
U : Γ(U,OX) → Γ(U,OX) is given by F#

U (a) = ap.

(c) Give an example of a scheme X of characteristic p such that morphism F of (b)
induces an isomorphism on Γ(X,OX ) but such that F is not an isomorphism. Be sure to
explain how to calculate Γ(X,OX ).

In this example, choose a closed point x ∈ X, and calculate the fibre of the morphism
F over x, i.e., X ×X Specκ(x), where κ(x) = OX,x/mx.
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(a) Let X be a scheme. Give conditions on X for which the class group Cl(X) is
defined, and give the definition of Cl(X).

(b) Let k be a field of characteristic 0, and letX = Speck[x, y, z]/(xy−z3). Calculate
Cl(X). You may take as given that X is normal.

(c) Let A be a Noetherian integral domain, x ∈ A an element such that the ideal
(x) is prime, and let Ax denote as usual the localization of the ring A at the multiplicative
subset {1, x, x2, . . .}. Show that if Ax is a UFD, so is A.
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(a) Let X be a topological space, F a sheaf of abelian groups on X, U := {Ui | i ∈ I}
an open cover of X. Define the ith Čech cohomology group Ȟ i(U ,F) of F with respect to
the cover U .

(b) Let k be a field, and let X = P
r
k. Describe, without proof, Hp(X,OX (n)) for all

p and for all n.

Suppose there is an exact sequence

0 → OX → OX(1)⊕(r+1) → T → 0

for a sheaf of OX-modules T . Calculate H i(X,T ) for all i.

(c) Let k be a field, let X = P
r
k, and let Y ⊆ X be a hypersurface defined by

Y = V (f), for f a homogeneous polynomial of degree d. Suppose dimY > 1. Then:

(i) Write down a short exact sequence of sheaves relating OX , OY and IY/X , the ideal
sheaf of Y in X. Relate IY/X to OX(1).

(ii) Show for all n ∈ Z, the natural map

H0(X,OX (n)) → H0(Y,OY (n))

is surjective.

(iii) Show Y is connected.

(iv) Show H i(Y,OY (n)) = 0 for 0 < i < dimY and all n ∈ Z.
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