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1

State and prove the Local LYM inequality. State the LYM inequality, and give two
proofs: one using Local LYM and one using maximal chains. Which antichains in P([n])
have size exactly

( n
⌊n/2⌋

)

?

(i) Let A ⊂ P([n]) be a family of sets such that, for each A ∈ A, there do not exist
sets B,C ∈ A with B,C 6= A such that A ⊂ B and A ⊃ C. How large can A be?

(ii) Suppose that, in the proof of the Erdős-Ko-Rado Theorem using the Kruskal-
Katona Theorem, we used Local LYM in place of Kruskal-Katona. What bound would we
obtain (on the maximum size of an intersecting family of r-sets from an n-set)?

2

State the Kruskal-Katona Theorem, and give a proof using UV-compressions.

For which pairs (U, V ), with U, V disjoint subsets of [n] of the same size, is it the
case that for every 1 6 r 6 n, and every family A ⊂ X(r), we have |∂CU,V (A)| 6 |∂A|?
Justify your answer.

For each pair (U, V ) below, is it the case that for every 1 6 r 6 n, and every
left-compressed family A ⊂ X(r), we have |∂CU,V (A)| 6 |∂A|? Justify your answers.

(i) (U, V ) = (345, 126)

(ii) (U, V ) = (145, 236)

3

State and prove the vertex-isoperimetric inequality in the grid [k]n.

[You may assume that the theorem you are proving holds in the two-dimensional
grid [k]2.]

Suppose that every subset of size t in the grid [4]n has vertex-boundary of size at
least s (for some values of t and s). Prove that every subset of size t in the discrete cube
Q2n of dimension 2n has vertex-boundary of size at least s.
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4

State and prove the Uniform Covers Theorem.

State and prove the Bollobás-Thomason Box Theorem.

We say that a non-empty body is proper if it is connected and is a finite union
of boxes, each of positive volume. Show that if S is a proper body in R

3 such that
|S|2 = |S12||S13||S23| then S is a box.
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