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Let (X,B, µ, T ) be a measure preserving system and let A ∈ B be a set with
µ(A) > 0. Prove that there is n > 0 such that µ(A ∩ T−nA) > 0.

State and prove the Poincaré recurrence theorem.

In the following question you may use without proof the following result of
Furstenberg. Let (X,B, µ, T ) be a measure preserving system and let A ∈ B be a set
with µ(A) > 0. Let P (x) be a polynomial with integer coefficients such that P (0) = 0.
Then there is n > 0 such that µ(A ∩ T−|P (n)|A) > 0.

Let S ⊂ Z be a set of positive upper Banach density and let P (x) be a polynomial
with integer coefficients such that P (0) = 0. Prove that there are a, b ∈ S and n ∈ Z>0

such that b− a = P (n).

[If your argument involves the construction of a measure preserving system, you

may use without proof any result of the course to prove the measure preserving property.]

2

Define convergence in density and Cesàro convergence.

Let {an} be a bounded sequence of real numbers and a ∈ R. Prove that D-lim an = a

if and only if C-lim |an − a| = 0.

Let (X,B, µ, T ) be a weak mixing system. What can you say about the ergodicity
of its product with another measure preserving system? Give a condition in terms of
(X ×X,B × B, µ× µ, T × T ), which implies that (X,B, µ, T ) is weak mixing.

[State a theorem without proof.]

Let (X,B, µ, T ) be a weak mixing system. Prove that the Koopman operator UT

has no non-constant eigenfunctions.

Prove that a measure preserving system (X,B, µ, T ) is weak mixing if and only if
for all sets A,B,C ∈ B of positive measure, there is n > 1 such that µ(T−nA ∩ B) 6= 0
and µ(T−nA ∩ C) 6= 0.

[In this last part of the question, you may use without proof any characterization of

weak mixing from the course.]
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Define the entropy of a finite measurable partition and its conditional entropy with
respect to another finite measurable partition.

Let (X,B, µ, T ) be a measure preserving system and let ξ, η ⊂ B be finite partitions.
Prove that Hµ(ξ|η) 6 Hµ(ξ).

Prove that Hµ(T
−1ξ) = Hµ(ξ).

Define hµ(T, ξ) and hµ(T ). Prove that the limit in the definition exists.

[You may use without proof the properties of subadditive sequences.]

Prove that

hµ(T, ξ) = inf
F

1

|F |
Hµ

(

∨

n∈F

T−nξ
)

,

where F runs through all finite subsets of Z>0.

[In this last part of the question, you may use without proof any results of the course.]

4

Define the K-mixing property of a measure preserving system and prove that it
implies mixing.

Define the tail σ-algebra of a finite measurable partition in a measure preserving
system.

Prove that a system is K-mixing if and only if the tail σ-algebra of every finite
measurable partition is trivial.

Let (X,B, µ, T ) be a measure preserving system. We write P for the collection of
sets A ∈ B such that hµ(T, ξA) = 0, where ξA = {A,X\A}. Prove that P is a σ-algebra.
Prove that A ∈ P if and only if there is a finite partition ξ ⊂ B and a set A′ ∈ T (ξ) such
that µ(A△A′) = 0.

[In this last part of the question, you may use without proof any results of the course.]
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