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1 Consider Ω a connected open bounded set of Rd and let x0 ∈ Ω and let r > 0
be such that B(x0; r) ⊂ Ω. We denote by dS the surface measure on ∂B(x0; r) and we
denote ωd the Lebesgue measure of the unit ball, i.e., ωd = meas(B(0; 1)). Recall that if
u ∈ C2(Ω) is harmonic in Ω then

u(x0) =
1

ωdrd

∫

B(x0;r)
u(x)dx =

1

dωdrd−1

∫

∂B(x0;r)
u(x)dS, for any B(x0; r) ⊂ Ω. (1)

(i) Let u ∈ C0(Ω) satsfying (1) in Ω such that there exists y ∈ Ω with u(y) = supΩ u

or u(y) = infΩ u. Prove that u must be constant in Ω. Hint : Consider the set
ΩM := {x ∈ Ω; u(x) = M} for M := supΩ u and prove that ΩM = Ω.

(ii) Prove that any continuous function in Ω satisfying (1) for any x0, r such that
B(x0; r) ⊂ Ω must be harmonic in Ω. Hint : Combine point (i) with the solvability of
the Dirichlet problem on balls proved in lectures, i.e., consider the unique harmonic
function h in B(x0; r) such that h = u on ∂B(x0; r).

(iii) Let ϕ ∈ C∞(Rd) be a radial function such that

supp(ϕ) ⊂ B(0, 1),

∫

Rd

ϕ(x)udx = ωd

∫ 1

0
ϕ(r)rd−1dr = 1.

and let
ϕǫ(z) = ǫ−dϕ

(z

ǫ

)

, ∀z ∈ R
d, ∀ǫ > 0.

Denoting by ∗ the convolution of functions in R
d, i.e.,

u ∗ ϕǫ(x) =

∫

Rd

u(y)ϕǫ(x− y)dy.

Prove that, for every x ∈ Ω,

u ∗ ϕǫ(x) =

∫ 1

0

∫

Sd−1

u(x+ ǫrω)ϕ(rω)rd−1drdω, ǫ < dist(x, ∂Ω). (2)

Hint: Observe that, as ϕ is a radial function, one can write ϕǫ(y − x) = ϕǫ(x− y).
Then, use the change of variables y 7→ x+ y and later spherical coordinates y = rω,
for r ∈ (0,+∞) and ω ∈ S

d−1.

(iv) If u is a continuous function satisfying (1), use (2) and the properties of ϕǫ, to prove
that

u(x) = ϕǫ ∗ u(x), ∀x ∈ Ω, ǫ < dist(x, ∂Ω). (3)

Deduce from (3) that u ∈ C∞(Ω).

(v) Suppose that Ω′ ⊂ Ω is an open set whose closure Ω′ is such that R(Ω′) :=
dist(Ω′, ∂Ω) > 0. Using (1), show that for any u harmonic function u ∈ C∞(Ω),

max
j=1,...,d

max
Ω′

|∂xj
u| 6

d

R(Ω′)
max
Ω

|u|. (4)

Hint: Recall that meas(∂B(0, R)) = dωdR
d−1.
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2 Let Ω be a connected bounded open set of Rd with boundary ∂Ω and let x0 ∈ ∂Ω.

• The point x0 is said to be regular with respect to the Laplacian if there exists a
continuous function w ∈ C0(Ω;R) satisfying the properties

w(x0) = 0, ∆w 6 0 in Ω, w > 0 in Ω \ {x0} . (1)

• ∂Ω satisfies the exterior sphere condition at x0 if there exists a ball B(y,R) such
that B(y,R) ∩ Ω = {x0}.

(i) (d = 2) Prove that if Ω ⊂ R
2 satisfies the exterior sphere condition at a point x0 ∈ ∂Ω,

then x0 is a regular point for the Laplacian.
Hint: Consider, for a given z ∈ R

2, a function of the form w(x) = log (δ|x− y|),
for δ ∈ R to be chosen.

(ii) Consider an operator of the form

L =

d
∑

i,j=1

aij(x)∂2
xixj

+

d
∑

j=1

bj(x)∂xj
+ c(x), x ∈ Ω, (2)

with smooth coefficients and satisfying,

aij(x) = aji(x), (3)

∃λ > 0 such that
∑

i,j

aij(x)ξiξj > λ|ξ|2, ∀x ∈ Ω, ∀ξ ∈ R
d, (4)

∃ℓ > 0 such that max
j=1,...,d

|bj(x)| < λℓ. (5)

where λ and ℓ are two given real constants. State and prove the weak maximum
principle for this operator under the assumptions (3), (4), (5) and that c = 0.

(iii) If we assume that c > 0, does the weak maximum principle hold true? Find a proof
or a counterexample according to your answer.

(iv) Suppose c = 0. Let ϕ ∈ C0(∂Ω) and f ∈ C0,α(Ω) be fixed, for some α ∈ (0, 1). Use
the previous point to prove that solutions to the Dirichlet problem

{

Lu = f, in Ω,
u = ϕ, on ∂Ω.

(6)

are unique in C0(Ω) ∩ C2(Ω).

(v) Let u ∈ C0(Ω) ∩ C2(Ω) be the unique solution of (6) as in the previous point. Does
u ∈ C2,α(Ω) hold? Give sufficient conditions on ϕ, f and on the regularity of ∂Ω to
guarantee that C2,α(Ω).
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3 Let d = 3 and B(x0, r) =
{

x = (x1, x2, x3) ∈ R
3; |x− x0| < r

}

for any r > 0

and x0 ∈ R
3. Set in particular B = B(0, 1). Consider L =

∑3
i,j=1 ∂xj

(

aij(x)∂xi

)

for the
matrix

A(x) = (aij(x)) =







1−
x2

1

2 0 0
0 1 0
0 0 1






, ∀x ∈ B. (1)

Given f ∈ Lq(B) with q ∈ (1,∞), consider the Dirichlet problem

−Lu = f in D, u = 0 on ∂D. (2)

(i) Fix r ∈ (0, 1) and x0 ∈ B such that B(x0, r) ⊂ B. Recall that a weak solution
u ∈ H1(B) of (2) satisfies

∫

B(x0,r)

(

∇u · ∇φ−
x21
2
∂x1

u∂x1
φ

)

dx =

∫

B(x0,r)
fφdx, ∀φ ∈ H1

0 (B(x0, r)). (3)

Consider w ∈ H1
0 (B(x0, r)) satisfying ∆w = 0 weakly in B(x0, r), i.e.,

∫

B(x0,r)
∇w · ∇φdx = 0, ∀φ ∈ H1

0 (B(x0, r)). (4)

Defining v = u− w, prove that v ∈ H1
0 (B(x0, r)) satisfies

∫

B(x0,r)
|∇v|2dx 6 C1

∫

B(x0,r)
|∇u|2dx+ C2

(

∫

B(x0,r)
|f |

6

5 dx

)
5

3

, (5)

for some constants C1, C2 > 0.

(ii) Prove that, if q = 2, then for some C3 > 0

(

∫

B(x0,r)
|f |

6

5dx

)
5

3

6 C3

(

∫

B(x0,r)
|f |2dx

)

r1+2α, for α =
1

2
. (6)

(iii) Recall that a result from lectures guarantees that if g ∈ H1
loc(B) satisfies

∫

B(x0,ρ)

∣

∣

∣

∣

∣

g(x)−
1

meas(B(x0, ρ))

∫

B(x0,ρ)
g(y)dy

∣

∣

∣

∣

∣

2

dx 6 M2ρ3+2α, ∀B(x0, ρ) ⊂ B,

(7)
then g ∈ C0,α(B). Assume that there exists C4 > 0 such that

∫

B(x0,ρ)
|∇u|2dx 6 C4ρ

1+2α
(

‖∇u‖2L2(B) + ‖f‖2L2(B)

)

, ∀B(x0, ρ) ⊂ B. (8)

Prove that u ∈ C0,α(B).
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4 Let Ω ⊂ R
d be a connected open bounded set with boundary ∂Ω of class C2,α, for

some α ∈ (0, 1). Let F ∈ C∞(R) be non-negative, with bounded derivatives and satisfying

|z| 6 F (z) 6 2|z|, ∀z ∈ R, (1)

‖F (g)‖C0,α(Ω) 6 ‖g‖2
C0(Ω)

, ∀g ∈ C2,α(Ω). (2)

Given f ∈ C0,α(Ω) with f 6 0 and ϕ ∈ C2,α(Ω) with ϕ > 0, consider the semilinear
Dirichlet problem

−∆u+ F (u) = f in Ω, u = ϕ on ∂Ω. (3)

Consider, for δ > 0,

Xδ :=
{

w ∈ C2,α(Ω); ‖w‖C2,α(Ω) 6 δ
}

,

which is a convex closed subset of the Banach space C2,α(Ω) ⊂ C0(Ω) ∩C2,α(Ω).

(i) Let 0 < δ < 1. For any w ∈ Xδ consider the linear Dirichlet problem

−∆u+ F (w) = f in Ω, u = ϕ on ∂Ω. (4)

Using Schauder theory from lectures, prove that the mapping

T : Xδ 7→ C2,α(Ω); T (w) = u

is well defined. Derive an estimate relating ‖T (w)‖C2,α to the norms ‖F (w)‖C0,α ,
‖T (w)‖C0 , ‖f‖C0,α and ‖ϕ‖C0,α .

(ii) Assuming that
‖f‖C0,α(Ω) + ‖ϕ‖C2,α(Ω) 6 ǫ, (5)

prove that, if δ < 1 is chosen small enough, there exists ǫ = ǫ(δ) > 0 small enough
such that T (Xδ) ⊆ Xδ.

(iii) Is T always a contraction in Xδ for δ > 0 small enough? (Hint: Consider examples
in dimension one that can be explicitely solved.)

END OF PAPER
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