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1 Analysis of Partial Differential Equations

Denote by Q := (0, L)n the open cube of side length L in R
n, and let U ⊂ R

n be a
connected, bounded open set with C∞ boundary.

a) Show that for any u ∈ H1(Rn), the estimate:

‖u‖2L2(Q) 6 |Q|u2Q +
n

2
L2 ‖Du‖2L2(Q) ,

holds, where for any open set W ⊂ R
n and integrable function w : W → R, we

define:

wW :=
1

|W |

∫

W

w(x)dx,

to be the mean of w over W .

b) Suppose that (ui)
∞

i=1 is a sequence of functions ui ∈ H1(U).

i) State what it means for (ui)
∞

i=1 to converge weakly in H1(U) to some
u ∈ H1(U).

ii) Show that if (ui)
∞

i=1 is bounded in H1(U), then there exists a subsequence
(uij )

∞

j=1 and u ∈ H1(U) such that uij → u strongly in L2(U).

c) Show that there exist constants C1, C2, depending only on U , such that the
inequalities:

i) ‖u− uU‖L2(U) 6 C1‖Du‖L2(U),

ii) ‖u‖L2(U) 6 C2

(

‖Du‖L2(U) + ‖u‖L2(∂U)

)

,

hold for all u ∈ H1(U).
[Hint: suppose that the result is false, and derive a contradiction.]

You may assume the Sobolev approximation and extension theorems, together with standard
results concerning Hilbert spaces.
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2 Analysis of Partial Differential Equations

a) State without proof the Lax–Milgram theorem for a bilinear form B : H ×H → R,
where H is a real Hilbert space.

b) Let U ⊂ R
n be open and bounded, with C∞ boundary. Consider the system of

elliptic equations:
−∆u+ u+ w = f

−∆w + w − 3u = g

}

in U, (1)

where u,w : U → R are the unknowns, f, g ∈ L2(U) are given functions and

∆ =
∑n

i=1
∂2

∂x2

i

is the usual Laplace operator. We suppose that u,w are subject to

the boundary conditions:
u = 0

∂w
∂ν

= 0

}

on ∂U, (2)

with ∂w
∂ν

=
∑n

i=1 νi
∂w
∂xi

, where ν is the outward unit normal to ∂U .

i) Define a weak solution to the system of equations (1) subject to boundary
conditions (2), clearly identifying the spaces to which u,w belong. Show that
if a weak solution is such that u,w ∈ C2(U), then the equations (1), (2) hold
classically.

ii) Show that there exists a unique weak solution to the problem for any
f, g ∈ L2(U).
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3 Analysis of Partial Differential Equations

a) State what it means for a function f : Rn → R to be real analytic at a point y ∈ R
n.

b) Suppose aij , bi, c : Rn → R are real analytic functions for i, j = 1, . . . , n and consider
the second order linear differential equation:

Lu :=
n
∑

i,j=1

aij
∂2u

∂xi∂xj
+

n
∑

i=1

bi
∂u

∂xi
+ cu = 0. (1)

i) State what it means for a real analytic surface Σ ⊂ R
n to be characteristic

for the equation (1).

ii) Suppose Σ is not characteristic at p ∈ Σ. What data must be prescribed on
Σ such that a unique real analytic solution to (1) exists in a neighbourhood
of p?

c) Find and sketch all of the characteristic surfaces of the following equation defined
on R

2:
∂2u

∂x2
=

∂

∂y

[

(

1− y2
)2 ∂u

∂y

]

. (2)

Show that if u(0, y) and ux(0, y) are given real analytic functions of y, then a unique
real analytic solution exists in a neighbourhood of {x = 0}.

Note that in view of the dimension, the characteristic surfaces will in fact be
curves. You may assume without proof the Cauchy–Kovalevskaya theorem and its
corollaries.

d) Show that if u ∈ C∞(R2) satisfies (2), then:

d

dx

∫ 1

−1

[

(

∂u

∂x

)2

+
(

1− y2
)2

(

∂u

∂y

)2
]

dy = 0.

Deduce that if u(0, y) = ux(0, y) = 0 for y ∈ (−1, 1), then u(x, y) = 0 for
(x, y) ∈ R× (−1, 1).

e) For ǫ > 0, let Iǫ = (−1 + ǫ, 1 − ǫ). Suppose that φ,ψ ∈ C∞

c (Iǫ). Find and sketch
the maximal open set Dǫ ⊂ R

2 for which there exists a unique u ∈ C∞(Dǫ) solving
(2) with u(0, y) = φ(y), ux(0, y) = ψ(y) for y ∈ Iǫ.

You may assume results from lectures concerning hyperbolic equations.
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4 Analysis of Partial Differential Equations

For r > 0 and x0 ∈ R
n let Br(x0) ⊂ R

n be the open ball of radius r centred at x0, i.e.
Br(x0) = {x ∈ R

n : |x− x0| < r}.

a) Let A be a constant, symmetric matrix, with components Aij , and suppose there
exists θ > 0 such that

∑n
i,j=1A

ijξiξj > θ|ξ|2 for all ξ ∈ R
n. Define:

L0u =

n
∑

i,j=1

AijDiDju.

Show that if u ∈ C∞

c (Br(x0)) for some r > 0, x0 ∈ R
n then:

θ‖D2u‖L2(Br(x0)) 6 ‖L0u‖L2(Br(x0)).

b) Suppose that aij = aji ∈ C0(Rn), and define:

Lu =

n
∑

i,j=1

aijDiDju.

Fix r > 0, x0 ∈ R
n. Show that there exists ǫ > 0 depending only on θ, n such that

if ‖aij −Aij‖L∞(Br(x0)) < ǫ for all i, j = 1, . . . , n, then

θ

2
‖D2u‖L2(Br(x0)) 6 ‖Lu‖L2(Br(x0))

holds for all u ∈ C∞

c (Br(x0)).

[Hint: you may wish to consider the identity Lu = L0u+
∑n

i,j=1(a
ij −Aij)DiDju]

c) Suppose now that aij ∈ C0(Rn) satisfy the uniform ellipticity condition:

n
∑

i,j=1

aij(x)ξiξj > θ|ξ|2 for all x ∈ R
n, ξ ∈ R

n.

Show that if U,W ⊂ R
n are open sets with W ⊂⊂ U , then there exists a constant

C depending on aij , U,W such that:

‖D2u‖L2(W ) 6 C
(

‖Lu‖L2(U) + ‖u‖H1(U)

)

.

holds for all u ∈ C∞

c (Rn).

[Hint: You may wish to apply your result from part c) with Aij = aij(x0) and r

chosen appropriately. You may assume any results you require concerning partitions
of unity.]

d) Deduce that if u ∈ H1(U) satisfies Lu ∈ L2(U), then in fact u ∈ H2
loc.(U).
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