MAT3, MAMA

MATHEMATICAL TRIPOS P

Part III

Monday, 3 June, 2019 9:00 am to 12:00 pm

PAPER 102

LIE ALGEBRAS AND THEIR REPRESENTATIONS

Attempt ALL questions.

There are **FIVE** questions in total. Questions 1 and 4 are each worth 18 points. Question 2 is worth 20 points. Questions 3 and 5 are each worth 22 points.

All Lie algebras on this exam are assumed to be finite dimensional over \mathbb{C} .

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

SPECIAL REQUIREMENTS

Triangular graph paper $(types A_2, B_2 and G_2)$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Define what it means for a subspace I of a Lie algebra \mathfrak{g} to be an *ideal* of \mathfrak{g} . Prove that every term $\mathfrak{g}^{(n)}$ in the derived series is an ideal of \mathfrak{g} . [Prove any result you use.]

 $\mathbf{2}$

(b) Define what it means for a Lie algebra to be *simple*. Prove that $\mathfrak{sl}_2(\mathbb{C})$ is simple. [Prove any result you use.]

(c) Define the Killing form κ of a Lie algebra \mathfrak{g} . Show that if \mathfrak{g} is simple, then its Killing form is nondegenerate. [You may use without proof the fact that that if $\kappa(x, y) = 0$ for all $x, y \in \mathfrak{g}$, then \mathfrak{g} is solvable. Prove any other result that you use.]

 $\mathbf{2}$

Let

$$\mathfrak{g} = \mathfrak{sp}_6(\mathbb{C}) = \{ x \in \mathfrak{gl}_6(\mathbb{C}) \mid Jx + x^T J = 0 \}$$

where

	(0	0	0	1	0	0
J =	0	0	0	0	1	0
	0	0	0	0	0	1
	-1	0	0	0	0	0 .
	0	-1	0	0	0	0
	$\begin{pmatrix} 0\\0\\-1\\0\\0 \end{pmatrix}$	0	-1	0	0	0/

Let \mathfrak{t} be the space of diagonal matrices in \mathfrak{g} , and let Φ be the set of roots of \mathfrak{g} with respect to \mathfrak{t} . [For parts (a) - (c), you do not need to provide proofs for your answers.]

(a) Explicitly describe the elements of Φ as maps $\mathfrak{t} \to \mathbb{C}$.

(b) Identify a root basis $\Delta \subset \Phi$. Draw the Dynkin diagram of Φ and label it with the elements of Δ .

(c) For each element $\alpha \in \Delta$, explicitly describe the image of the elements of Δ under the simple reflection w_{α} .

(d) Let $\check{\Phi} = \{\check{\alpha} \mid \alpha \in \Phi\}$ be the dual root system. Prove that $\check{\Delta} := \{\check{\alpha} \mid \alpha \in \check{\Delta}\}$ forms a root basis of $\check{\Phi}$. Draw the Dynkin diagram of $\check{\Phi}$ and label it with the elements of $\check{\Delta}$. [You do not need to prove that $\check{\Phi}$ forms a root system.]

UNIVERSITY OF

3

Let \mathfrak{g} be a semisimple Lie algebra of rank ℓ over \mathbb{C} with Cartan subalgebra \mathfrak{t} and corresponding root system Φ . Let $\Delta = \{\alpha_1, \alpha_2, ..., \alpha_\ell\}$ be a choice of root basis for Φ . Recall that an element $x \in \mathfrak{g}$ is called *regular* if the centralizer $\mathfrak{z}_{\mathfrak{g}}(x) := \{y \in \mathfrak{g} \mid [xy] = 0\}$ has dimension ℓ . [In this problem, you may use any result from the course if clearly stated.]

- (a) State and prove a criterion in terms of roots for an element $t \in \mathfrak{t}$ to be regular.
- (b) Show that if $\ell > 1$ and $x \in \mathfrak{g}_{\alpha}$ for some root α , then x is not regular.

(c) Let
$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Suppose
 $\psi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{g}$

is an injective homomorphism such that $\psi(h) \in \mathfrak{t}$ and $\psi(e) = \sum_{i=1}^{\ell} e_{\alpha_i}$ for some nonzero elements $e_{\alpha_i} \in \mathfrak{g}_{\alpha_i}$. Show that $\psi(h)$ and $\psi(e)$ are regular. [You do not need to prove the existence of ψ .]

$\mathbf{4}$

Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} with Cartan subalgebra \mathfrak{t} and corresponding root system Φ . Let $\Delta = \{\alpha_1, \alpha_2, ..., \alpha_\ell\}$ be a choice of root basis, and let $\{\omega_1, ..., \omega_\ell\}$ be the fundamental weights with respect to this choice of Δ . Given a dominant weight λ , let $V(\lambda)$ be the irreducible representation of \mathfrak{g} with highest weight λ .

(a) State the Weyl dimension formula, briefly defining the notation you use.

For the rest of the problem, assume $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C})$ and that α_1 is a short root.

(b) Let $\lambda = a\omega_1 + b\omega_2$ be a dominant weight. Using the Weyl dimension formula, find a formula for dim $V(\lambda)$ in terms of a and b. [You do not need to prove the Weyl dimension formula.]

(c) Let V be the defining 5-dimensional representation of \mathfrak{g} . Decompose $V \otimes V$ into irreducible subrepresentations, i.e. find $\lambda_1, \lambda_2, ..., \lambda_n$ such that $V \otimes V \simeq V(\lambda_1) \oplus ... \oplus V(\lambda_n)$ as a representation of \mathfrak{g} . Explain your logic.

(d) Let $M(\omega_2)$ be the Verma module of highest weight ω_2 . Describe the weights of $M(\omega_2)$ and the weights of its maximal proper submodule in terms of α_1 and α_2 . [You do not need to provide a proof for your answer to part (d).]

CAMBRIDGE

 $\mathbf{5}$

Let \mathfrak{g} be a simple Lie algebra of rank ℓ over \mathbb{C} with Cartan subalgebra \mathfrak{t} and root system Φ . Let $\Phi_0 \subset \Phi$ be the subset of roots of maximal length. Let

$$\mathfrak{h} = \mathfrak{t} \oplus \sum_{lpha \in \Phi_0} \mathfrak{g}_lpha.$$

Let Δ be a root basis of Φ . [Throughout this problem, you may use any result from the course.]

(a) Show that there exists a unique choice of simple roots Δ_0 for Φ_0 such that the fundamental Weyl chamber for Δ_0 contains the fundamental Weyl chamber for Δ . [You may use without proof that Φ_0 is a root system of rank ℓ .]

For the rest of the problem, assume that \mathfrak{g} is of type G_2 , and fix the root basis Δ_0 as in part (a). You may use without proof that Φ_0 is a root system of type A_2 and that \mathfrak{h} is a subalgebra of \mathfrak{g} isomorphic to \mathfrak{sl}_3 . Let $\{\omega_1, \omega_2\}$ be the fundamental weights for Φ_0 corresponding to Δ_0 . For a dominant weight λ , let $V(\lambda)$ be the irreducible representation of \mathfrak{h} of highest weight λ .

(b) Suppose $\lambda = a\omega_1 + b\omega_2$ is a dominant weight for Φ_0 with respect to Δ_0 . State and prove a criterion on the pair (a, b) for λ to be a dominant weight for Φ with respect to Δ .

(c) Let V be the 7-dimensional irreducible representation of \mathfrak{g} . Decompose V under its restriction to \mathfrak{h} , i.e. find weights $\lambda_1, ..., \lambda_n$ such that $V|_{\mathfrak{h}} \simeq V(\lambda_1) \oplus ... \oplus V(\lambda_n)$. Explain your logic.

(d) Suppose $\lambda = a\omega_1 + b\omega_2$ is a dominant weight for Φ with respect to Δ , and let U be the irreducible representation of \mathfrak{g} with highest weight λ . Show that $U|_{\mathfrak{h}}$ contains a submodule isomorphic to $V(b\omega_1 + a\omega_2)$.

END OF PAPER