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Consider a two-dimensional stratified flow above a deformable boundary. The fluid
can be modelled as incompressible, inviscid and Boussinesq, and the domain assumed to be
semi-infinite. Taking x in the horizontal direction and z vertically upwards, the deformable
boundary is located at z = Re(η0e

i(kx−ωt)) . Here, η0 is the complex amplitude, k > 0 is
the wavenumber and ω > 0 is the frequency of the boundary oscillations. The motion of
the boundary produces small perturbations to the fluid that is otherwise at rest with a
continuous background stratification ρ̂(z).

(a) Under what conditions can the disturbance caused by the boundary be considered
linear? For the case of a linear disturbance where the background stratification
is characterised by a constant buoyancy frequency N > 0, derive the dispersion
relation and determine the structure of the velocity u = (u,w) field perturbation.
Describe the cases ω/N < 1 and ω/N > 1, sketching key features of the motion and
the orientation of any wave velocities that may be relevant.

(b) Suppose now the stratification is given by

N(z) =

{

N1, 0 6 z < H,
N2, z > H,

where N1 = 0 and N2 > ω. What matching conditions are required at z = H?
Determine the complex amplitude of the waves for z > H.

(c) Describe, with the aid of sketches, the flow field in the case where

N(z) =







N1, 0 6 z < H,
N2, H < z < 2H,
N1, z > 2H,

for the same values of N1 and N2 as in (b). At what frequency (or frequencies) will
the disturbance be maximum? You do not need to determine details of the solution,
but you must justify your answer.
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Consider a particle-laden layer of fluid extending along a horizontal boundary
between barriers located at x = 0 and x = L0. The particle volume concentration φ
and layer depth h are given by φ = φ0 ≪ 1 and h = H at t = 0. The particles have
constant settling velocity Ws and density ρp = ρ0(1 + γ), where γ is a constant with
0 < γφ0 ≪ 1 and ρ0 is the constant density of the fluid above the layer. There is a weak
turbulent motion within the particle-laden layer such that the volume of the layer remains
constant and the particles within the layer remain uniformly distributed in the vertical
whilst still allowing particles to settle on the lower boundary. There is no resuspension of
particles that have settled. The density of the fluid containing the particles is given by
ρf = ρ0(1− θ) with the heat from the particles causing the fluid expansion θ to vary as

dθ

dt
= βφ,

where θ = 0 at t = 0. Here, β > 0 is a constant and θ ≪ 1.

(a) Give a linearized equation of state for the bulk density ρ of the particle-laden layer
and give an expression for the flux of particles onto the lower boundary. Determine
the evolution of φ(t) and hence ρ(t) of the layer. Show that the layer becomes
statically unstable at t = Ts, where Ts =

H
Ws

ln(1 + γWs

βH
).

(b) Suppose now that the barrier at x = L0 is removed at t = 0, allowing the layer
to flow as a gravity current with depth h and velocity u. Derive the shallow water
equations governing h(x, t), u(x, t), φ(x, t) and θ(x, t) behind the front of the current.
Determine the characteristics and establish that the system is hyperbolic while the
density field remains statically stable.

(c) By assuming h, φ and θ are constant along the length of the current, and specifying
a constant Froude number for the front condition, derive an integral model for the
advance of the current. Determine the evolution of the length L(t) of the current in
the limit β > 0, Ws = 0 and hence the maximum distance reached by the current.
Determine also the maximum distance reached by the current in the limit β = 0,
Ws > 0.
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Consider a localised source emitting turbulent fluid at an angle θ0 to the horizontal
in the x−z plane. The resulting three-dimensional ‘forced plume’ can be characterised by
the mass flux Q, momentum flux M = (Mx,Mz) and buoyancy flux F . Here, Mx is the
flux of horizontal momentum and Mz is the flux of vertical momentum. The conditions at
the source are given by Q = 0, M = M0(cos θ0, sin θ0) and F = F0, and the density of the
ambient fluid ρ0 is constant. The resulting forced plume has an approximately circular
cross-section that can be described by a top-hat profile of radius b(s) with axial speed
V (s) and density ρ(s), where s is the arc length from the source along the centreline of
the forced plume and θ(s) is the local inclination of the centreline.

(a) Give expressions for Q(s), M(s) and F (s) in terms of b, V , ρ and θ for a Boussinesq
flow. Describe the ‘Batchelor entrainment’ assumption with entrainment coefficient
α and give an expression for the entrainment velocity ue. Derive differential
equations for the mass and buoyancy fluxes.

(b) In the limit F0 = 0 for θ0 = 0, derive a differential equation for Mx. How does this
change if F0 6= 0? Derive also, for F0 > 0, a differential equation for Mz.

(c) Construct the ‘jet length’ LJ from the conditions at the source and describe briefly
its relevance to the current problem. Determine the path taken by the centreline of
the plume for s ≪ LJ .

(d) For θ0 = 0 and s ≫ LJ , the plume rises nearly vertically. Determine Q(ŝ), Mz(ŝ)
and F (ŝ) as power laws in ŝ = s + s0, where s0 is a virtual origin. Describe the
path of the plume centreline in this limit. Using physical arguments, comment on
the location of the virtual origin relative to the position of the actual source. (You
should provide an estimate of the position of the virtual origin based on scaling, but
do not attempt a detailed calculation of the actual position.) Sketch the plume.
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Consider an isolated particle of density ρp, with equivalent spherical diameter d, on
a planar boundary in a fluid flow of density ρf .

(a) Perform a force balance in the downstream x-direction over a horizontal boundary
to determine the condition for which the particle starts to move downstream. Take
the granular friction coefficient as µs and neglect viscous effects. Show that the
threshold Shields number can be written as

Θth,0 =
4µs

3CD

,

with CD the drag coefficient. Provide a sketch of this situation.

(b) Now suppose the boundary this grain rests on is inclined upwards at an angle α to
the flow direction. Provide a sketch of this situation. Construct a modified force
balance and determine the threshold Shields number Θth,0(α).

(c) The equations relating sand flux q, saturated sand flux qsat, shear stress τ , threshold
shear stress τth and surface topography η are

φb
∂η

∂t
= −

∂q

∂x
,

Lsat
∂q

∂x
= qsat − q,

qsat = φbχ (τ − τth)
γ ,

with volume fraction of the packed bed φb and saturation length Lsat. Explain the
meaning and origin of each of these equations. The local slope angle α is related to
the height of the bedform η as

tan(α) =
∂η

∂x
.

Assuming the bedform as locally planar, derive linearized expressions for the
perturbations η̂, q̂, q̂sat and τ̂ for the case where 0 < α ≪ 1 and Lsat 6= 0. Perform
a linear stability analysis. Use your solution to part (b) to obtain an equation for
τ̂th taking

τth = τth,0 + τ̂th exp (σt+ ik(x− ct)) ,

with wavenumber k, velocity c and growth rate σ.

(d) Derive the dispersion relation connecting σ, k and c, and obtain expressions for
σ(k) and c(k). Interpret the results and comment on the cases (i) τ0 ≈ τth,0 and (ii)
τ0 ≫ τth,0.
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