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(a) What does it mean for a function ψ ∈ L2(R) to be an orthonormal wavelet of L2(R)?

A multiresolution analysis (MRA) consists of a sequence of closed subspaces Vj of
L2(R), with j ∈ Z, satisfying the following properties.

(I) Vj ⊂ Vj+1 for all j ∈ Z.

(II) For all j ∈ Z, f ∈ Vj if and only if f(2·) ∈ Vj+1.

(III)
⋂

j∈Z Vj = {0}.

(IV)
⋃

j∈Z Vj = L2(R).

(V) There exists ϕ ∈ V0 such that {ϕ(· − k); k ∈ Z} is an orthonormal basis of V0.

The function ϕ in (V) is called a scaling function for the MRA.

(b) Prove that (I), (II) and (V ) imply (III).

(c) Explain, without proof, how one can construct an orthonormal wavelet from an
MRA.

(d) Is χ[−1/2,1/2) a scaling function of an MRA? Justify your answer.

(e) One is often interested in wavelets which have a high number of vanishing moments
and compact support. Explain why these two properties are desirable and any
tradeoffs between the two properties. Give examples of two wavelets, and for your
examples, explain under which circumstances one wavelet should be chosen over the
other?
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(a) Let ϕ ∈ L2(R)∩L1(R) be a compactly supported scaling function of a Multiresolu-
tion Analysis (MRA). Show that its low pass filter m is necessarily a trigonometric
polynomial which satisfies

(i) |m(ξ)|2 + |m(ξ + π)|2 = 1 for all ξ ∈ R,

(ii) |m(0)| = 1.

State clearly any properties of ϕ that you invoke.

(b) Let m be a trigonometric polynomial satisfying conditions (i) and (ii) listed in (a)
and

(iii) m(ξ) 6= 0 for all ξ ∈ [−π/2, π/2].

Assuming that Θ(ξ) :=
∏

∞

j=1m(ξ/2j) converges uniformly on compact sets and

1

2π

∫

|Θ(ξ)|2 e−ikξdξ =

{

1 k = 0,

0 k 6= 0,

show that its inverse Fourier transform defines a scaling function of an MRA.

(c) In the construction of Daubechies wavelets of order N ∈ N, the associated low pass
filter is of the form

m(ξ) =

(

1 + e−iξ

2

)N

L(ξ),

where L is a trigonometric polynomial of degree N − 1 such that L(π) 6= 0. What
can you say about the vanishing moments of the associated wavelet? Justify your
answer.

(d) Show that the scaling function ϕ associated to the low pass filterm in (c) has Fourier
transform of the form

ϕ̂(ξ) =

(

1− e−iξ

iξ

)N ∞
∏

j=1

L(ξ/2j).

Moreover, show that supξ |L(ξ)| < 2N−α−1 implies that ϕ is uniformly Lipschitz-α.
You may use without proof the fact that a function f is uniformly Lipschitz-α if

there exist C, ε > 0 such that its Fourier transform satisfies
∣

∣

∣
f̂(ξ)

∣

∣

∣
6 C/(1+|ξ|)α+1+ε

for all ξ ∈ R.
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(a) Given an orthonormal basis G = {gm}m∈N of a Hilbert space H, what are the
N -term linear f lN and nonlinear approximations fnN of an element f ∈ H?

(b) Let G be an interval adapted orthonormal wavelet basis of L2[0, 1] where the wavelet
has q vanishing moments and is q-times continuously differentiable, and suppose
that f ∈ L2[0, 1] is piecewise polynomial of degree p < q. Show that the nonlinear
approximation error is εn(N, f) := ‖fnN − f‖2L2 = O(ωN ) for some ω ∈ (0, 1) and

that the linear approximation error εl(N, f) :=
∥

∥f lN − f
∥

∥

2

L2
= O(N−1).

(c) If G is an orthonormal Fourier basis of L2[0, 1], what is the best linear and nonlinear
approximation rate for functions defined on [0, 1] which are smooth except for a
finite number of discontinuities?

(d) Given a 1D Multiresolution Analysis (MRA) for L2(R), explain how one can
construct a wavelet basis of L2(R2).

(e) Suppose that f ∈ L2([0, 1]2) is piecewise polynomial of degree p except on a smooth
curve of finite length. Consider its nonlinear approximation from the 2D wavelet
basis of L2([0, 1]2), constructed from the 1D interval adapted wavelet basis of (b).
Show that ‖fnN − f‖2L2 = O(N−1).
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4 Let x0 ∈ R
N , A ∈ R

m×N and let y = Ax0 + e where e ∈ R
m with ‖e‖2 6 η and

η > 0. Consider the minimization problem

min
x∈RN

‖x‖1 subject to ‖Ax− y‖2 6 η (1)

(a) Let x0 ∈ R
N , S = Supp(x0) and consider (1) with η = 0 and y = Ax0. Show that

x0 is the unique solution to (1) if and only if A satisfies the null space property
relative to the set S.

(b) Show that if there is a unique minimizer x̂ to (1), then x̂ must be m-sparse. (Hint:
show that {aj ; j ∈ Supp(x̂)} where aj denotes the jth column of A, is a linearly
independent set).

Let s ∈ N. The sth restricted isometry constant δs(A) of a matrix A ∈ C
m×N is the

smallest value δ > 0 such that

(1− δ) ‖x‖22 6 ‖Ax‖22 6 (1 + δ) ‖x‖22 .

(c) Show that |〈Au, Av〉| 6 δs+t(A) ‖u‖2 ‖v‖2 for all u, v ∈ C
N such that Supp(u) ∩

Supp(v) = ∅ and |Supp(u)| = s, |Supp(v)| = t.

(d) Prove that if δs(A) < 1/3, then any minimizer x̂ to (1) satisfies

‖x̂− x0‖2 6 Cη +
σs(x0)√

s
,

where σs(x0) = minx is s-sparse ‖x− x0‖1 and C is a positive constant. You may use
without proof any results concerning robust null space properties, provided that
they are stated clearly.
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5 Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary.

(a) Define the total variation |Df | (Ω) of a function f ∈ L1(Ω) and the space of functions
of bounded variation.

(b) Consider the following minimization problem.

min
f∈L2(Ω)

|Df | (Ω) + 1

2
‖f − g‖2L2(Ω) . (1)

Prove that there exists a unique solution to this minimization problem. Let b > a
be real numbers. Prove that if g(x) ∈ [a, b] for a.e. x ∈ Ω, then we also have that
the minimizer f∗ is such that f∗(x) ∈ [a, b] for a.e. x ∈ Ω.

(c) State the proximal gradient descent algorithm and explain how this can be applied
to solve a discretized version of (1), that is, letting X = R

N×N for some N ∈ N,
consider the following minimization problem from some given g ∈ X:

min
u∈X

{‖∇u‖2,1 +
1

2
‖u− g‖22} (2)

where ‖q‖22 =
∑

i,j q
2
i,j for q ∈ X, ‖p‖2,1 =

∑

i,j

√

(p1i,j)
2 + (p2i,j)

2 for p = (p1, p2) ∈
X ×X, and ∇ : X → X ×X is the discrete gradient operator defined by

(∇u)i,j =
(

(D+
x u)i,j

(D+
y u)i,j

)

,

with

(D+
x u)i,j =

{

ui+1,j − ui,j i < N

0 i = N,
(D+

y u)i,j =

{

ui,j+1 − ui,j j < N

0 j = N.

You may use, without proof, the dual formulation of (2).

(d) How can the proximal gradient descent algorithm be applied to solve

min
x∈RN

‖x‖1 +
1

2
‖Ax− y‖22 ,

where A ∈ R
m×N and y ∈ R

m?
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6 Write an essay on image smoothing and edge enhancement with linear and nonlinear
diffusion equations.

OR

Write an essay on the construction of wavelet bases for the unit interval [0, 1].

END OF PAPER
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