
MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2018 1:30 pm to 3:30 pm

PAPER 339

TOPICS IN CONVEX OPTIMISATION

Attempt no more than TWO questions.

There are THREE questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None

Treasury Tag

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1

Consider the linear program

max
x∈Rn

rTx subject to x > 0, 1Tx = 1 (P)

where r ∈ R
n is given, and 1 = (1, . . . , 1) ∈ R

n is the vector of all ones.

(a) Find analytically the optimal x = x∗ of (P). [5]

(b) We assume now that the vector r is “uncertain”, i.e., we only know that it lies in a
certain set

U = {r ∈ R
n : ‖P (r − r0)‖∞ 6 1} ,

where r0 is a nominal value for r, P is a given m×n matrix, and ‖z‖∞ = maxj |zj |.
Given this uncertainty we want to solve the following max-min problem, which is a
robust counterpart of (P):

max
x∈Rn

(

min
r∈U

rTx

)

subject to x > 0, 1Tx = 1. (R)

(i) Formulate the inner optimisation problem minr∈U rTx (where x is fixed) as a
linear program. [15]

(ii) Write the dual of this linear program and show that strong duality holds. [15]

(iii) Conclude that problem (R) is equivalent to the following linear program: [15]

maximise
x,α,β

rT0 x− (α+ β)T1

subject to x > 0, 1Tx = 1
α, β > 0, P T (α− β) = x.
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2 Consider the following optimisation problem:

maximise
x∈Rn

‖x‖22

subject to |aTi x| 6 1 ∀i = 1, . . . ,m,
(P)

where a1, . . . , am ∈ R
n and ‖x‖22 =

∑n
i=1 x

2
i . Let v

∗ be the optimal value of (P).

Consider the semidefinite relaxation:

maximise
X∈Sn

Tr(X)

subject to Tr(aia
T
i X) 6 1 ∀i = 1, . . . ,m

X � 0.

(SDP)

Let p∗SDP be the optimal value of the SDP.

(a) Show that p∗SDP > v∗. [5]

The purpose of the remaining questions is to prove the inequality:

v∗ >
1

2 log(2m)
p∗SDP (1)

(b) Let X∗ be the optimal solution of the SDP and let X∗ = V ΛV T be an eigenvalue
decomposition of X, where V is an orthogonal matrix V V T = V TV = In and Λ is
diagonal. For ξ ∈ {−1, 1}n define

x̂(ξ) = V Λ1/2ξ and x(ξ) =
1

maxi=1,...,m |aTi x̂(ξ)|
x̂(ξ).

Verify that x(ξ) is feasible for (P) and that [15]

‖x(ξ)‖22 = Tr(X∗)
1

(maxi=1,...,m |aTi x̂(ξ)|)
2
.

(c) We want to show that there exists ξ ∈ {−1, 1}n such that

(

max
i=1,...,m

|aTi x̂(ξ)|

)2

6 2 log(2m). (2)

To do so we will use a probabilistic argument. You can use the following fact without
proof:

Let u1, . . . , um be vectors in R
n such that ‖ui‖2 6 1 for all i = 1, . . . ,m.

If ξ ∈ {−1, 1}n is uniformly distributed on {−1, 1}n then

Pr
ξ

[

max
i=1,...,m

|uTi ξ| 6 α

]

> 1− 2me−α2/2 (3)

where Pr[A] denotes the probability of event A.

Using this result show that there is at least one ξ ∈ {−1, 1}n such that (2) holds. [20]

[Hint: show that ui = (V Λ1/2)T ai have norm at most 1, and find α such that the

right-hand side of (3) is nonnegative.] Conclude that (1) holds. [10]
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(a) Let f be a polynomial in one variable and assume there exist numbers c0, . . . , cn > 0
such that

f(x) =

n
∑

k=0

ckx
k(1− x)n−k.

Show that f(x) > 0 for all x ∈ [0, 1]. [5]

The purpose of the following questions is to prove a converse of part (a), under the
assumption that f is strictly positive on [0, 1]. This will allow us to define a convergent
linear programming hierarchy for the optimization of polynomials on [0, 1]. Given a
function f : [0, 1] → R we define the Bernstein approximation:

Bn(f)(x) =
n
∑

k=0

(

n

k

)

f(k/n)xk(1− x)n−k ∀x ∈ [0, 1].

We are going to assume the following important facts about Bn (we use the notation
‖f‖ = maxx∈[0,1] |f(x)|, and R[x]6d stands for polynomials of degree at most d):

(i) If f is continuous on [0, 1] then ‖Bn(f)− f‖∞ → 0 as n → ∞.

(ii) If f ∈ R[x]6d then Bn(f) ∈ R[x]6d. Furthermore for n > d, Bn is
invertible as a linear map on R[x]6d.

(b) Let f ∈ R[x]6d be strictly positive on [0, 1], i.e., f(x) > 0 for all x ∈ [0, 1]. Let
gn = (Bn)

−1(f) ∈ R[x]6d for n > d. Show that for large enough n, gn > 0 on [0, 1]. [10]

(c) Show the following: if f is a polynomial that is strictly positive on [0, 1] then there
exist n ∈ N and nonnegative coefficients c0, . . . , cn > 0 such that [15]

f(x) =

n
∑

k=0

ckx
k(1− x)n−k.

(d) Using the previous question, design a hierarchy of linear programs to compute the
minimum of a polynomial f ∈ R[x] on [0, 1]. In other words, show that there is
a sequence v1 6 v2 6 . . . 6 minx∈[0,1] f(x) with vn → minx∈[0,1] f(x) as n → ∞,
such that vn can be computed using a linear program with at most n+1 inequality
constraints. [20]
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