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Consider the linear program
max rlz subjectto x>0, 1Tz =1 (P)
TeR™
where r € R" is given, and 1 = (1,...,1) € R" is the vector of all ones.
(a) Find analytically the optimal z = z* of (P). 5]

b) We assume now that the vector r is “uncertain”, i.e., we OIlly know that it lies in a
certain set

U={reR: |Pr— o) <1},

where 7 is a nominal value for r, P is a given m x n matrix, and ||z||« = max; |z;|.
Given this uncertainty we want to solve the following max-min problem, which is a
robust counterpart of (P):

max (min rTar:) subject to x>0, 172 =1. (R)
zeR? reu

(i) Formulate the inner optimisation problem min,c; v’ 2 (where z is fixed) as a
linear program. [15]
(ii) Write the dual of this linear program and show that strong duality holds. [15]
(iii) Conclude that problem (R) is equivalent to the following linear program: [15]

maximise rlz — (a+ 8)T1
x7a7ﬁ

subject to x > 0, 1Tz =1
a,B>0,Pl(a—p) =z
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2 Consider the following optimisation problem:
maximise ||z[|3
reR™
subject to |alz| <1Vi=1,...,m,

where a1,...,a, € R" and ||z||3 = >°I_, 22. Let v* be the optimal value of (P).

Consider the semidefinite relaxation:
maximise Tr(X)
Xesn
subject to Tr(a;al X) <1Vi=1,...,m (SDP)
X =0.

Let p5pp be the optimal value of the SDP.

(a) Show that p&pp = v*.
The purpose of the remaining questions is to prove the inequality:

1
v 5 log(Qm)pSDP (1)

(b) Let X* be the optimal solution of the SDP and let X* = VAV” be an eigenvalue
decomposition of X, where V is an orthogonal matrix VV? = VTV = I, and A is
diagonal. For £ € {—1,1}" define

1
B¢ =VAV% and (¢ = #(8).

maxi;=1,...m |a;~rfﬁ(f)|

Verify that z(€) is feasible for (P) and that

1

(maxi=1,_._m |al #(£)])?

(¢) We want to show that there exists £ € {—1,1}" such that

lz(€)]13 = Tr(X™)

2
(s, a7 3(0)1) < 21og(m) ®
i=1,...,
To do so we will use a probabilistic argument. You can use the following fact without
proof:
Let uy, ..., uy be vectors in R™ such that ||u;|l2 < 1 foralli=1,...,m.

If £ € {—1,1}" is uniformly distributed on {—1,1}" then
Pr [ max |ul¢] < a] > 1 — 2me /2 (3)
& |i=1,...m

where Pr[A] denotes the probability of event A.

Using this result show that there is at least one £ € {—1,1}" such that (2) holds.

[Hint: show that u; = (VAY?)Ta; have norm at most 1, and find a such that the
right-hand side of (3) is nonnegative.] Conclude that (1) holds.
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(a) Let f be a polynomial in one variable and assume there exist numbers ¢y, ..., ¢, >0
such that

flz) = Z crpa®(1 —z)" 7k,
k=0
Show that f(x) > 0 for all z € [0,1].

The purpose of the following questions is to prove a converse of part (a), under the
assumption that f is strictly positive on [0,1]. This will allow us to define a convergent
linear programming hierarchy for the optimization of polynomials on [0,1]. Given a
function f : [0,1] — R we define the Bernstein approximation:

Bu(f)@) =3 (”)f(k/n)xm ot e 0,1
k
k=0
We are going to assume the following important facts about B, (we use the notation

[ Il = max,ep,1) | f ()], and R[x]<q stands for polynomials of degree at most d):

(i) If f is continuous on [0, 1] then ||B,(f) — flloc — 0 as n — oc.

(i) If f € R[z]<q then B,(f) € R[x]<4. Furthermore for n > d, B, is
invertible as a linear map on R[x]<4.

(b) Let f € R[z]<q be strictly positive on [0, 1], i.e., f(z) > 0 for all x € [0,1]. Let
gn = (By)"1(f) € R[z]<q for n > d. Show that for large enough n, g,, > 0 on [0, 1].

(c) Show the following: if f is a polynomial that is strictly positive on [0, 1] then there
exist n € N and nonnegative coefficients ¢y, ..., ¢, > 0 such that

flz)= Z crpat(1 — )"k,
k=0

(d) Using the previous question, design a hierarchy of linear programs to compute the
minimum of a polynomial f € Rlz] on [0,1]. In other words, show that there is

a sequence vy < v2 < ... < Mingep,q) f(2) with v, — mingepo1) f(2) as n — oo,
such that v,, can be computed using a linear program with at most n 4+ 1 inequality
constraints.
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