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1

(a) Use the method of steepest descents to find the leading-order term in the
asymptotic expansion of

I =

∫

C

e−ik(z−2eπi/4√z)dz

for k ∈ R, k ≫ 1. The branch cut of
√
z is taken along the negative imaginary axis, and C

is a contour composed of (−∞,−δ]∪Cδ ∪ [δ,∞), with Cδ a semicircular contour of radius
0 < δ ≪ 1 in the upper half plane so as to avoid the branch point. Identify both the
saddle point, zs, and the contour of steepest descents.

(b) Find the leading-order term in the asymptotic expansion of

J(z0) =

∫

C

e−ik(z−2eπi/4
√
z)

z − z0
dz,

where z0 is a complex constant with |z0| < 1, and C the same contour as described in part
(a). Be careful to consider different cases for z0.

(c) Identify a distinguished limit, z0 → zd, of J(z0), and show that when the limit
is approached from below the steepest descents contour, then for k ≫ 1

lim
z0→zd

J(z0) ∼ e−k

∫ ∞

−∞

e−
1

4
s2

s− sd
ds+ 2πi e−ik(z0−2eπi/4√z0),

where sd is to be determined in terms of some or all of z0, zd, zs. Show that this expression
is consistent with your results from part (b).
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2 The function y(x) satisfies the differential equation

ε2y′′ + 2(x− 1)y′ − 2εy =

{

2(x− 1) for 0 6 x 6 1

0 for 1 6 x 6 2
,

and boundary conditions
y(0) = a , y(2) = b ,

where 0 < ε ≪ 1, and a and b are order-one constants. State appropriate conditions on y

and y′ at x = 1.

By means of matched asymptotic expansions find the solution for y(x) correct to
and including O(ε) terms for 0 6 x 6 2. Briefly comment on the case when b = a+ 1.

Suppose instead that y(x) satisfies the differential equation (note the change of sign)

−ε2y′′ + 2(x− 1)y′ − 2εy =

{

2(x− 1) for 0 6 x 6 1

0 for 1 6 x 6 2
,

with the same boundary conditions. Without performing detailed calculations, briefly
outline the asymptotic structure of the solution.

Hints.

(i) Recall that

erf(z) =
2√
π

∫

z

0
e−t2dt and erf(∞) = 1 .

(ii) A particular solution for Y (z) to

Y ′′ + 2zY ′ = 2a1z + a2 + a3erf(z) ,

where a1, a2 and a3 are constants, is

Y = a1z +

∫

z

0
e−t2

∫

t

0
eu

2

(a2 + a3erf(u)) dudt .

(iii) As z → ∞
∫

z

0
e−t2

∫

t

0
eu

2

dudt → 1
2 log |z|+ C1 ,

∫

z

0
e−t2

∫

t

0
eu

2

erf(u)dudt → 1
2 log |z|+ C2 ,

where C1 and C2 are to be taken as known constants.

Part III, Paper 336 [TURN OVER



4

3 For t > 0, the function y(t; ε) satisfies the differential equation

ytt + exp(−2εt)(εyt + y) = 0 ,

and the initial conditions
y(0; ε) = 0 , yt(0; ε) = 1 .

Find the leading-order WKB solution for y(t; ε).

Explain why the WKB solution is no longer valid when t = O(ε−1 ln(ε−1)), and find
an asymptotic solution in this region by means of a shift in origin of t and a rescaling.
Find the limiting behaviour of the solution for t ≫ ε−1 ln(ε−1).

Hints.

(i) You may quote the exact solution to

ytt + exp(−2t)y = 0 ,

as
y = αJ0(e

−t) + βY0(e
−t) ,

where J0 and Y0 are Bessel functions, and α and β are constants.

(ii) You may also quote the following limiting behaviours of J0(z) and Y0(z):

as z → 0, J0(z) ∼ 1 + . . . and Y0(z) ∼
2

π

(

ln
(

1
2z

)

+ γ
)

+ . . . ,

as z → ∞, J0(z) ∼
(

2

πz

)
1

2

cos
(

z − π

4

)

+ . . . and Y0(z) ∼
(

2

πz

)
1

2

sin
(

z − π

4

)

+ . . . ,

where γ is Euler’s constant.
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