MATHEMATICAL TRIPOS Part III

Tuesday, 5 June, 2018 $\,$ 1:30 pm to 3:30 pm

PAPER 336

PERTURBATION METHODS

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Use the method of steepest descents to find the leading-order term in the asymptotic expansion of

$$I = \int_C e^{-ik(z-2e^{\pi i/4}\sqrt{z})} dz$$

for $k \in \mathbb{R}$, $k \gg 1$. The branch cut of \sqrt{z} is taken along the negative imaginary axis, and C is a contour composed of $(-\infty, -\delta] \cup C_{\delta} \cup [\delta, \infty)$, with C_{δ} a semicircular contour of radius $0 < \delta \ll 1$ in the upper half plane so as to avoid the branch point. Identify both the saddle point, z_s , and the contour of steepest descents.

(b) Find the leading-order term in the asymptotic expansion of

$$J(z_0) = \int_C \frac{e^{-ik(z-2e^{\pi i/4}\sqrt{z})}}{z-z_0} dz,$$

where z_0 is a complex constant with $|z_0| < 1$, and C the same contour as described in part (a). Be careful to consider different cases for z_0 .

(c) Identify a distinguished limit, $z_0 \to z_d$, of $J(z_0)$, and show that when the limit is approached from below the steepest descents contour, then for $k \gg 1$

$$\lim_{z_0 \to z_d} J(z_0) \sim e^{-k} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{4}s^2}}{s - s_d} ds + 2\pi i \, e^{-ik(z_0 - 2e^{\pi i/4}\sqrt{z_0})},$$

where s_d is to be determined in terms of some or all of z_0, z_d, z_s . Show that this expression is consistent with your results from part (b).

UNIVERSITY OF

3

2 The function y(x) satisfies the differential equation

$$\varepsilon^2 y'' + 2(x-1)y' - 2\varepsilon y = \begin{cases} 2(x-1) & \text{for } 0 \leq x \leq 1\\ 0 & \text{for } 1 \leq x \leq 2 \end{cases},$$

and boundary conditions

$$y(0) = a$$
, $y(2) = b$,

where $0 < \varepsilon \ll 1$, and a and b are order-one constants. State appropriate conditions on y and y' at x = 1.

By means of matched asymptotic expansions find the solution for y(x) correct to and including $O(\varepsilon)$ terms for $0 \le x \le 2$. Briefly comment on the case when b = a + 1.

Suppose instead that y(x) satisfies the differential equation (note the change of sign)

$$-\varepsilon^2 y'' + 2(x-1)y' - 2\varepsilon y = \begin{cases} 2(x-1) & \text{for } 0 \le x \le 1\\ 0 & \text{for } 1 \le x \le 2 \end{cases},$$

with the same boundary conditions. *Without performing detailed calculations*, briefly outline the asymptotic structure of the solution.

Hints.

(i) Recall that

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$$
 and $\operatorname{erf}(\infty) = 1$.

(ii) A particular solution for Y(z) to

$$Y'' + 2zY' = 2a_1z + a_2 + a_3 \operatorname{erf}(z),$$

where a_1, a_2 and a_3 are constants, is

$$Y = a_1 z + \int_0^z e^{-t^2} \int_0^t e^{u^2} \left(a_2 + a_3 \operatorname{erf}(u)\right) du dt.$$

(iii) As $z \to \infty$

$$\int_0^z e^{-t^2} \int_0^t e^{u^2} du dt \to \frac{1}{2} \log |z| + C_1 ,$$
$$\int_0^z e^{-t^2} \int_0^t e^{u^2} \operatorname{erf}(u) du dt \to \frac{1}{2} \log |z| + C_2 ,$$

where C_1 and C_2 are to be taken as known constants.

Part III, Paper 336

[TURN OVER

UNIVERSITY OF

4

For $t \ge 0$, the function $y(t;\varepsilon)$ satisfies the differential equation

$$y_{tt} + \exp(-2\varepsilon t)(\varepsilon y_t + y) = 0$$
,

and the initial conditions

$$y(0;\varepsilon) = 0$$
, $y_t(0;\varepsilon) = 1$.

Find the leading-order WKB solution for $y(t;\varepsilon)$.

Explain why the WKB solution is no longer valid when $t = O(\varepsilon^{-1} \ln(\varepsilon^{-1}))$, and find an asymptotic solution in this region by means of a shift in origin of t and a rescaling. Find the limiting behaviour of the solution for $t \gg \varepsilon^{-1} \ln(\varepsilon^{-1})$.

Hints.

3

(i) You may quote the exact solution to

$$y_{tt} + \exp(-2t)y = 0$$

as

$$y = \alpha J_0(e^{-t}) + \beta Y_0(e^{-t}),$$

where J_0 and Y_0 are Bessel functions, and α and β are constants.

(ii) You may also quote the following limiting behaviours of $J_0(z)$ and $Y_0(z)$:

as
$$z \to 0$$
, $J_0(z) \sim 1 + \dots$ and $Y_0(z) \sim \frac{2}{\pi} \left(\ln\left(\frac{1}{2}z\right) + \gamma \right) + \dots$,
as $z \to \infty$, $J_0(z) \sim \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \cos\left(z - \frac{\pi}{4}\right) + \dots$ and $Y_0(z) \sim \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \sin\left(z - \frac{\pi}{4}\right) + \dots$,

where γ is Euler's constant.

END OF PAPER