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1 Consider a time-harmonic wave ψ(x, y, z) with wave number k = ω/c propagating
in a medium with refractive index n(x, y, z) = c(x, y, z)/c0, where c0 and c are the wave
speed in free space and in the medium respectively, so k = k0n, where k0 = ω/c0 is a
reference wavenumber.

Assume that the plane wave components of ψ(x, y, z) are propagating at small angles w.r.t.
the horizontal x, therefore the reduced wave E(x, y, z) = ψ(x, y, z)e−ik0x is a slowly-varying
function of x and obeys the parabolic equation.

The refractive index of the medium is given by

n(x, y, z) = 1 + µW (x, y, z) (1)

where µ is a constant and W (x, y, z) is the random part, which is normally distributed
and statistically stationary, and has been normalised so that < W >= 0 and < W 2 >= 1

(i) Explain how equations for the moments of the field can be obtained by treating
the scattering and diffraction separately. Then derive an equation of propagation for the
first moment of the field, < E(x, y, z) >, and write the solution < E(x, y, z) > at a generic
point x in the medium.

(ii) Assume now that the medium is isotropic, and δ-correlated in the direction of
propagation x:

< W (x, y1, z1)W (x, y2, z2) >= δ(x1 − x2)B(η, ζ) , (2)

where B is a differentiable function of the distances η = y1 − y2 and ζ = z1 − z2.

Express the solution < E(x, y, z) > in terms of the power spectrum of the refractive index
of the medium.

[You may use the following results:
If f(η, ζ) is isotropic, so f(r, θ) = f(r) in polar coordinates (r, θ), and

F (νη, νζ) =

∫ ∞

−∞

∫ ∞

−∞

f(η, ζ)e−i(νηη+νζζ)dη, dζ (3)

then the following applies:

F (νη, νζ) = F (ν) =

∫ ∞

0
f(r)J0(νr)rdr , where ν = |(νη, νζ)| , (4)

together with the inverse transform

f(ν) =

∫ ∞

0
F (ν)J0(νr)νdν . (5)

Also, J0(0) = 1.]

(iii) Write now an explicit expression for the above solution in the case when the
medium has power spectrum given by:

S(ν) = µ2L3e−(νL)2/4 , (6)

where L is the correlation length of the medium.
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2 Consider a randomly inhomogeneous medium occupying the strip contained in a
3-dimensional space between x = 0 and x = L.
A time-harmonic acoustic source, for example a Gaussian beam centred at z = z0, on the
transverse, two-dimensional z-plane, emits a signal at x = 0, in the direction parallel to
the x-axis. An array of transducers of size A on the transverse plane at x = L can both
record and transmit acoustic signals.

(i) Describe what a time-reversal experiment is, and how it differs in a randomly
inhomogeneous medium from the case of a deterministic medium. Give a brief, heuristic
explanation of the differences.

Denote the initial time-harmonic source by Ψ0(x, z), and write a mathematical
expression for the time-reversed, back-propagated field ΨB(x, z) at x = 0, in the frequency
domain.

(ii) Assume now that the initial source at x = 0 is a rapidly decaying function of
z, and consider the Wigner distribution of two vector fields on R

d, u(z) and v(z), defined
by:

W [u, v](z,p) =
1

(2π)d

∫

Rd

e−ip·z′u(z+
1

2
z′)v∗(z−

1

2
z′)dz′ . (1)

By choosing the functions u and v appropriately, write the time-reversed, back-
propagated field ΨB(x, z) at x = 0 as an expression involving the integral of the Wigner
distribution W [u, v](z+z

′

2 ,p), over the plane of the receiver:

WA[u, v](z,p) =

∫ +∞

−∞

∫ +∞

−∞

e−ip·z′W [u, v]

(

z+ z′

2
,p

)

dz′ , (2)

where z, z′ and p are 2-dimensional vectors.

(iii) Consider now the case where the medium occupying the strip between x = 0
and x = L is free space containing random, well separated point scatterers, and the
initial signal is ψ0, emitted at the transverse plane at x = 0, then time-reversed and
back-propagated at the transverse plane at x = L.

By writing the forward propagated wave formally as ψR = Hψ0, relate the largest point
scatterer (i.e. the one with largest reflected intensity) to the eigenvalues of the operator
H∗H.
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3 Consider a scalar wave ψi(r) incident upon an inhomogeneity with known space-
dependent refractive index n(r) = 1 + nǫ(r), which occupies a volume B ∈ R

3 and is
embedded in free space.

(i) Express the scattered field ψs(r) as an infinite series using the Born approxima-
tion.

Comment on the physical significance of the successive terms in the series, and give at
least one condition for the validity of the first Born approximation.

(ii) Assuming that nǫ ≪ 1, write an approximate expression for ψs in the first Born
approximation, disregarding terms of second order in nǫ.

Assume you are given a known incident field ψinc(r) and a known, measured scattered
field ψs(r). By defining a suitable operator A, write this as an operator equation

A[nǫ] = ψs , (1)

and formulate the inverse problem of finding the unknown refractive index nǫ(r) as a
Landweber iteration.

(iii) Derive a closed form expression for the nth Landweber iterate, hence define
a regularisation operator Rn, and show that the reciprocal of the iteration index in the
Landweber approximation plays the part of a regularisation parameter. You may assume
that ψs ∈ D(A†) and ‖ A ‖< 2.

[Hint: use a singular value system for A, {σ2i , ui, vi}, and the geometric sum formula
Σn−1
k=0z

k = (1− zn)/(1 − z).]
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