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1 Consider motion governed by the following linearized rotating shallow water
equations on an f -plane (with a constant Coriolis parameter):

∂u

∂t
− f0v = −g ∂η

∂x
,

∂v

∂t
+ f0u = −g∂η

∂y
,

∂η

∂t
+

∂

∂x
(uH) +

∂

∂y
(vH) = 0.

When the free surface is undisturbed, the depth of the fluid is

H =

{
H0 − d, y < 0
H0 + d, y > 0

where d≪ H0. At t = 0 the fluid is at rest and the elevation of the free surface height is

η =

{
−η0, x < 0
η0, x > 0

where η0 is constant and η ≪ H0.

Find the steady state solution for η valid for large values of |y| (far from the step).
From this solution, calculate the potential energy per unit length released during the
adjustment from the initial conditions to the steady state. Obtain an expression for the
volume flux towards and away from the step for large |y|.

Derive a partial differential equation describing the evolution of η(x, y, t). Assuming
that η and Hv are continuous at y = 0 and that disturbances to the steady state solution
decay as y → ±∞, find the dispersion relation for disturbances of the form

η′(x, y, t) = Re
(
η̂(y)ei(kx−ωt)

)
.

Obtain an explicit expression for ω in the quasi-geostrophic limit (ω ≪ f0). Deduce the
direction of the phase velocity of the waves in this limit.

From your expression in the previous part, consider additionally the limit of long
waves where k ≪ 1/RD where RD =

√
gH0/f0. Find the group velocity and phase speed

of these waves. As the long waves propagate away from the origin they leave behind a
surface displacement of the form

η = η0sgn(x)−A(x, t)e−|y|/RD ,

where sgn is the sign function. Find and solve a partial differential equation for A(x, t).
Calculate the volume flux associated with the flow along the step for y < 0 and y > 0
and compare the result with the volume flux calculated earlier for the current far from the
step.
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2 An otherwise motionless ocean in the domain −∞ < z < 0 is subject to localized
heating from solar insolation such that the buoyancy evolves according to

∂b

∂t
+ u · ∇b = R(x, y, z),

where b = −gρ/ρ0 is the buoyancy and ρ0 is a constant reference density. Assuming that
the Rossby number associated with the subsequent motion is small, the Coriolis parameter
is f ≃ f0 + βy with f0 and β constant, and b = N2

0 z + b′ where N2
0 is constant, derive

an equation describing the evolution of quasi-geostrophic potential vorticity. Clearly state
any other approximations that you make.

If the buoyancy forcing in the previous equation is

R =
−R0z

H
exp

(−x2 − y2

L2
+

z

H

)
,

where R0, H, and L are constant and H > 0, solve for steady small amplitude (linearised)
circulation in geostrophic balance subject to the condition that the velocity vanishes for
x → +∞. Sketch the streamlines corresponding to this circulation in x-y plane at z = 0.
Discuss the circulation in the context of changes to the potential vorticity induced by the
forcing.

Considering the nonlinear quasi-geostrophic equations, derive the following Ω equa-
tion for the vertical circulation

N2
0

(
∂2w

∂x2
+
∂2w

∂y2

)
+ f20

∂2w

∂z2
= RHS,

where the term(s) on the right hand side (RHS) should be determined. Now considering
the response to weak forcing such that you can neglect any nonlinear terms appearing in
RHS, sketch the circulation in a y-z plane at x = 0 (you do not need to obtain an explicit
solution to the Ω equation). What is the vertical circulation far from the forcing region?
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3 Consider quasi-geostrophic flow on an f -plane, with constant Coriolis parameter
f0 and constant buoyancy frequency N . Explain, without detailed derivation of the quasi-
geostrophic equations, why the leading-order approximation to the vertical velocity w is
given by

w = −Dg

Dt

{
f0ψz

N2

}

where ψ is the quasi-geostrophic stream function and Dg/Dt denotes the rate of change
following the geostrophic flow. Show that the appropriate boundary condition on ψ at the
rigid sloping boundary z = αy, where α is comparable to the Rossby number, is

w = −Dg

Dt

{
f0ψz

N2

}
= αψx.

The surface z = αy forms a lower boundary for a semi-infinite domain in which there
is a basic flow (u, v, w) = (Λz, 0, 0), where Λ is constant. Assuming that the boundary
condition above may be applied at z = 0 (so the flow domain is 0 < z < ∞), write down
the equations governing small-amplitude disturbances to the basic flow in terms of the
disturbance quasi-geostrophic stream function ψ′. Show that if the interior disturbance
quasi-geostrophic potential vorticity q′ = ψ′

xx + ψ′
yy + (f20 /N

2)ψ′
zz is zero initially then it

is zero for all time.

For disturbances with q′ = 0 and of the form ψ′ = Re(ψ̂(z, t)eikx) show that the time
evolution of ψ̂z(0, t) is described by an ordinary differential equation. Derive a dispersion
relation for the phase speed c in terms of the x-wavenumber k when ψ̂(z, t) = ψ̂(c)(z)e−ikct.
Give brief qualititative explanations of the form of the ordinary differential equation and
of the propagation characteristics as captured by the dispersion relation, including how
these characteristics depend on the vertical shear Λ and the boundary slope α.

Now consider the case where there is additionally a rigid upper boundary at z = D.
Again consider disturbances of the form ψ′ = Re(ψ̂(z, t)eikx), with q′ = 0. Show that

ψ̂(z, t) = −cosh(µ(z −D))

µ sinhµD
ψ̂z(0, t) +

cosh(µz)

µ sinhµD
ψ̂z(D, t),

where µ = Nk/f0.

Use this expression to deduce a coupled pair of ordinary differential equations for
the quantities ψ̂z(0, t) and ψ̂z(D, t). Hence derive the dispersion relation for c in terms
of k when ψ̂(z, t) = ψ̂(c)(z)e−ikct. You may find it helpful to define the non-dimensional
quantities c̃ = c/ΛD, µ̃ = NkD/f0 and α̃ = αN2/f0Λ. Deduce that the flow is stable
when α̃ > 1 and unstable if 0 6 α̃ < 1. Can you say anything about α̃ < 0?
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4 The Boussinesq, f -plane, small Rossby number form of the Eulerian-mean equations
including momentum flux and density flux as forcing terms are as follows:

ut − f0va = −(u′v′)y (1)

f0u = −
py
ρ0

(2)

ρg = −pz (3)

vay + waz = 0 (4)

ρt + wa
dρs
dz

= −(ρ′v′)y. (5)

Overbars in these equations indicate averages in x, primes indicate disturbance
quantities, i.e. departures from the x-average value, (va, wa) are the (y, z) components of
the Eulerian-mean flow. The density is made up of three parts: ρ0 which is constant, ρs(z)
which defines the background state stratification and ρ which is associated with distur-
bance from the resting background state, with p the corresponding pressure disturbance.
dρs/dz is constant and N is the corresponding buoyancy frequency.

Starting from these equations, derive the transformed Eulerian-mean equations and
explain the role of the Eliassen-Palm flux in these equations. Explain also the relation of
the Eliassen-Palm flux to Rossby-wave propagation. (Detailed derivation of the Eliassen-
Palm wave activity relation is not required.) State and explain a corresponding ‘non-
acceleration’ theorem.

Now consider the effect on the mean flow of propagating and dissipating Rossby
waves in the domain 0 < y < L (with rigid boundaries at y = 0 and y = L), −∞ < z <∞,
assuming that u′v′ = 0 and

ρ′v′ = −dρs
dz

G0

f0
sin(πy/L)F(z),

where G0 is a positive constant and

F =





−1 (z < −D),

(z −D)/2D (−D < z < D),

0 (z > D),

i.e. the waves are excited by topography at a distant lower boundary, propagate upwards
and dissipate in the region −D < z < D. Solve for the latitudinal component v∗a of the
transformed Eulerian-mean circulation and for the acceleration ut. Justify carefully any
boundary conditions that you apply. [You may assume that these and related quantities
have the form of a function of z multiplied by either sin(πy/L) or cos(πy/L), according to
the relevant boundary conditions.]

Sketch the form of of ut and ρt in the (y, z) plane showing clearly what sign they take
in different regions. Similarly sketch the streamlines of the Eulerian-mean and transformed
Eulerian-mean circulations showing the direction of each.

Calculate the quantities
∫∞
−∞ dz ut and

∫ D
−D dz ut and comment on their values, in

particular on their variation with the quantity ND/f0L.
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