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A fluid of viscosity µ1 is injected into a porous medium of porosity φ and uniform
permeability k saturated in a fluid of viscosity µ2 > µ1. The initial interface between the
two fluids is planar, and the influence of gravity on the system is negligible. If the fluid is
injected into the medium with constant velocity U , show that the interface between the
fluids is unstable to perturbations with growth rate

σ =
αU

φ
M

where M = (µ2 − µ1)/(µ2 + µ1) is the mobility ratio, and α is the wavenumber of the
instability.

The porous medium contains a spatially variable wetting angle which manifests as
a macroscopic gradient in the apparent surface tension. Consider the role of a spatially
variable surface tension acting between the fluids of the form

p1 − p2 = γ(1 + βx)(κ0 +∇ · n̂),

where p1, p2 are the pressures in the two fluids at the interface, γ(1 + βx) is the surface
tension whose gradient in the direction of flow is β, κ0 is an intrinsic curvature in the
porous medium (at the pore-scale) and n̂ is the unit normal to the interface between the
fluids. Find the dispersion relationship for the growth of perturbations along the interface
as a function of M , the capillary number Ca = µ2U/γ, and the gradient in surface tension
β. What is the most unstable wavenumber? For what flow rates can the instability be
suppressed entirely?
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A layer of fluid of kinematic viscosity ν drains vertically into an infinitely deep
porous medium of porosity φ and permeability k under the action of gravity g. At time t,
the layer has thickness h(t) above the porous medium and occupies a region of thickness
l(t) within the porous layer. Given that the volume of fluid is fixed and that l(0) = 0,
h(0) = h0, determine a differential equation governing the evolution of l(t). Show that at
early times t ≪ 1

l(t) ∼

(

2kgh0
φν

t

)1/2

.

A two-dimensional gravity current of total volume V0(t/τ)
3, where τ is a constant

time scale, flows horizontally over a deep porous medium while draining vertically into the
medium. From first principles and giving physical descriptions of your model equations,
determine the equations governing the surface elevation h(x, t) of the current and the
depth l(x, t) to which it has drained into the porous medium

∂h

∂t
−

1

3

g

ν

∂

∂x

(

h3
∂h

∂x

)

= −

(

gk

ν

)(

1 +
h

l

)

= −φ
∂l

∂t
.

What constraints apply to these equations?

Show that your equations and constraints admit a family of similarity solutions
parameterised by φ and a drainage parameter

K = k

(

g3τ3

ν3V0

)2/5

.

(Note that you may find K raised to a power appearing in your dimensionless system of
equations.) You should determine a suitable similarity variable, the functional dependence
of the length of the current on time and the parameters of the system, up to a multiplicative
constant, and the ordinary differential equations describing the solutions. You do not need
to solve the equations.
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Magma is injected into the shallow crust, forming an axisymmetric intrusion with an
elastically deformed upper surface whose deformation can be modelled by that of a bending
beam with stiffness B (hydrostatic pressure contributions should be ignored throughout
this question). The magma initially enters the intrusion at a constant volumetric flux,
Q, and flows with viscosity µ. At all times, the inflation of the intrusion is quasi-static,
so that the interior pressure p is approximately uniform, and the rate of propagation is
controlled by physical processes at the front. Show that, in the interior, the thickness of
the intrusion is

h(r, t) =
3V

πR2

(

1−
r2

R2

)2

,

where V (t) is the volume of the intrusion and R(t) is its radial extent.

At early times, a vapour tip extends from the fracture front to the fluid front, whose
height is approximately given by

hf ≃
pT l

4
p

24B
,

where pT is the pressure in the vapour tip, and lp is peeling lengthscale at the fluid front.
Using a scaling analysis of the lubrication flow near the fluid front to derive an expression
for dR/dt and, by matching with the interior curvature, show that the radial extent of the
intrusion is approximately given by

R ∼

(

B3Q7

pTµ2
t9
)1/30

At late times the fracture toughness at the front dominates propagation and imposes
a curvature at the front, κf . In this limit, determine the radial extent of the intrusion as
a function of the volume, R(V ).

Finally, at late times the magma feeding the intrusion comes from an over pressured
reservoir whose pressure is pr = EVr, where Vr is the volume of the reservoir and E is the
elasticity of the rock. If the flux of magma from the reservoir to the intrusion is Q = β(pr−
p), and the volume of magma in the conduit is negligible, derive an expression for the vol-
ume of the intrusion, dV/dt, as a function of the initial reservoir volume, Vr0, the volume of
the intrusion, V , and material properties of the intrusion and reservoir (β,E,B, κf ). What
is the final size of the intrusion?
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Consider a full annual cycle of a single-category sea-ice model starting with an
ice-free ocean at the height of summer, with the atmospheric temperature given by

TA = Tm +∆T cos(t/τ),

where Tm is the freezing temperature of the ocean (the effect of salt is ignored in this
question), ∆T is the amplitude of the atmospheric temperature variation, τ = 1 year/2π
and t is time. You may assume that heat fluxes to the atmosphere and from the ocean
are given by simple Newton’s laws with heat-transfer coefficients λA and λO respectively
and that the ocean temperature is fixed at TO > Tm.

You should determine expressions for the surface temperature of the ocean or ice in
contact with the atmosphere, the time t1 at which ice begins to form, an implicit equation
for the thickness of ice h(t), the maximum ice thickness hm and the time t2 when that
is reached. You may assume that the heat flux from the ocean is negligible while ice is
growing.

Show, in particular, that

hm ≈ [1 + sin(t1/τ)]
1/2

(

2κτ

S

)1/2

if
λA

k

(κτ

S

)1/2
≫ 1,

where κ = k/ρcp is the thermal diffusivity of ice, k is the thermal conductivity of ice, ρ is
the density of ice, cp is the specific heat capacity of ice, and S = L/cp∆T , where L is the
latent heat of fusion.

Determine the conditions on the parameters of the system that must be satisfied so
that the heat flux is indeed ignorable while ice is growing.

Determine the thickness of ice at the end of the first year and hence show that
perennial ice forms if

1

S

λAκτ

k

(

1 +
π

2

λO

λA

TO − Tm

∆T

)

< hm.
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