MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2018 09:00 am to 12:00 pm

PAPER 331

HYDRODYNAMIC STABILITY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

- 1
- (a) Consider an isolated interface (with surface tension γ) between two incompressible, irrotational inviscid fluids of different densities in a finite depth region between two horizontal impermeable boundaries, such that when the flow is at rest $\rho = \rho_1$ for $0 < z \leq L_1$ and $\rho = \rho_2 < \rho_1$ for $-L_2 \leq z < 0$. The displacement $\eta = B \exp[i(kx - \omega t)]$ (real part understood, with k > 0 real) of the interface away from its equilibrium position at z = 0 may be assumed to be sufficiently small and smooth that the problem may be linearized, and the problem can also be considered to be two-dimensional.
 - (i) Write down the appropriate conditions at the impermeable boundaries on the upper-layer velocity potential ϕ_1 as $z \to L_1$ and on the lower-layer velocity potential ϕ_2 as $z \to -L_2$.
 - (ii) Briefly explain why the appropriate boundary conditions to apply at $z = \eta$ are

$$\frac{\partial \phi_{1,2}}{\partial z}\Big|_{z=\eta} = \frac{D\eta}{Dt},$$

$$\rho_1 \frac{\partial \phi_1}{\partial t} + \frac{1}{2}\rho_1 |\nabla \phi_1|^2 + g\rho_1 \eta = \rho_2 \frac{\partial \phi_2}{\partial t} + \frac{1}{2}\rho_2 |\nabla \phi_2|^2 + g\rho_2 \eta + P_2 - P_1,$$

where P_1 and P_2 are the pressures immediately above and below the interface.

(iii) You may assume that

$$P_2 - P_1 = -\gamma \frac{\frac{\partial^2 \eta}{\partial x^2}}{\left[1 + \left(\frac{\partial \eta}{\partial x}\right)^2\right]^{3/2}}.$$

Using this expression, linearize the boundary conditions, and hence show that the frequency $\omega = kc = \omega_r + i\sigma$ (where σ is real, and c is the phase speed, in general complex) satisfies the dispersion relation

$$\omega^2 \left[\rho_1 \coth kL_1 + \rho_2 \coth kL_2 \right] = -g(\rho_1 - \rho_2)k + \gamma k^3.$$

- (b) In the limit when both $L_1 \to \infty$ and $L_2 \to \infty$, identify:
 - (i) the cutoff wavenumber k_c ;
 - (ii) the maximum growth rate σ_m ;
 - (iii) and the wavenumber k_m of perturbation associated with σ_m .
- (c) Now consider the limit where $L_2 \to \infty$ and $k_c L_1 \ll 1$ (i.e. a thin bounded layer of dense fluid over an infinitely deep layer of less dense fluid).
 - (i) Identify the cutoff wavenumber for this flow.
 - (ii) Identify the maximum growth rate for this flow.
 - (iii) Identify the wavenumber of perturbation associated with the maximum growth rate.
 - (iv) Briefly compare these three quantities for this flow to the equivalent quantities for the flow considered in part (b) above.

CAMBRIDGE

 $\mathbf{2}$

Consider infinitesimal two-dimensional perturbations about a parallel shear flow in an inviscid unstratified fluid in a finite depth domain $z \in [-L, L]$ between impermeable boundaries:

$$\mathbf{u} = \overline{U}(z)\hat{\mathbf{x}} + \mathbf{u}'(x, z, t); \ U_{\min} \leq \overline{U} \leq U_{\max};$$
$$p = \overline{p}(z) + p'(x, z, t),$$
$$\begin{bmatrix} \mathbf{u}', p' \end{bmatrix} = [\hat{\mathbf{u}}(z), \hat{p}(z)] \exp[ik(x - ct)]; \ \hat{\mathbf{u}}(z) = (\hat{u}, \hat{w}),$$

where the wavenumber k is assumed real, and the phase speed $c = c_r + ic_i$ may in general be complex. The vertical velocity eigenfunction \hat{w} satisfies the Rayleigh equation,

$$\left(\frac{d^2}{dz^2} - k^2\right)\hat{w} - \frac{\hat{w}}{(\overline{U} - c)}\frac{d^2}{dz^2}\overline{U} = 0.$$

(a) Prove Howard's semicircle theorem, i.e. show that

$$\left[c_r - \frac{(U_{\max} + U_{\min})}{2}\right]^2 + [c_i - 0]^2 \leqslant \left[\frac{(U_{\max} - U_{\min})}{2}\right]^2.$$

(b) Now consider a piecewise-linear shear flow where $U_{\min} = -U_{\max}$:

$$\frac{\overline{U}}{U_{\max}} = \begin{cases} 1 & \zeta_L < \zeta \leqslant 1 \ (R1); \\ \frac{\zeta}{\zeta_L} & |\zeta| < \zeta_L \ (R2); \\ -1 & -1 \leqslant \zeta < -\zeta_L \ (R3); \end{cases}$$

where $\zeta = z/L$ and $\zeta_L = L_s/L < 1$.

- (i) Applying appropriate boundary conditions at $\zeta = \pm 1$, write down the forms of the general solution \hat{w} (involving four arbitrary constants) to the Rayleigh equation in the three regions R1, R2 and R3.
- (ii) Write down the conditions which \hat{w} must satisfy at $\zeta = \pm 1$ and $\zeta = \pm \zeta_L$.
- (iii) Hence derive four equations for the four arbitrary constants.
- (c) You are given that the simultaneous solution of those four equations leads to the dispersion relation

$$c^{2} = 1 - \frac{\alpha \zeta_{L} (1 + X^{2}) Y^{2} + 2\alpha \zeta_{L} X Y - X Y^{2}}{\alpha^{2} \zeta_{L}^{2} \left[(1 + X^{2}) Y + X (1 + Y^{2}) \right]},$$

where $\alpha = kL$, $X = \tanh[\alpha \zeta_L]$ and $Y = \tanh[\alpha(1 - \zeta_L)]$. By considering the limits $\alpha \to 0$ and $\alpha \to \infty$ or otherwise, derive a condition on ζ_L for the flow to be linearly unstable. (You may assume that c^2 is a monotonic function of α .)

[TURN OVER

UNIVERSITY OF CAMBRIDGE

4

3 Consider incompressible unstratified flow at finite Reynolds number with a steady background flow U(y) (where y is chosen to be the wall-normal direction).

(a) You may assume three-dimensional normal mode forms for sufficiently small and smooth wall-normal velocity v and wall-normal vorticity η , i.e.

$$v(x,y,z,t) = \hat{v}(y)e^{i(\alpha x + \beta z - \omega t)}; \ \eta(x,y,z,t) = \hat{\eta}(y)e^{i(\alpha x + \beta z - \omega t)}.$$

For an appropriate choice of non-dimensionalization, show that $\hat{v}(y)$ and $\hat{\eta}(y)$ satisfy the Orr-Sommerfeld equation and the Squire equation respectively:

$$\begin{bmatrix} (-i\omega + i\alpha U)(\mathcal{D}^2 - \kappa^2) - i\alpha \mathcal{D}^2 U - \frac{1}{Re}(\mathcal{D}^2 - \kappa^2)^2 \end{bmatrix} \hat{v} = 0; \ \mathcal{D} \equiv \frac{d}{dy}; \\ \begin{bmatrix} (-i\omega + i\alpha U) - \frac{1}{Re}(\mathcal{D}^2 - \kappa^2) \end{bmatrix} \hat{\eta} = -i\beta \mathcal{D}U\hat{v}; \ \kappa^2 = \alpha^2 + \beta^2.$$

- (b) Define *Orr-Sommerfeld modes* and *Squire modes*, and show that Squire modes are always damped.
- (c) Consider two-dimensional flow with $\beta = 0$, and constant background flow $U(y) = U_0$. Show that \hat{v} satisfies

$$\hat{v}(y) = a_1 e^{\alpha y} + a_2 e^{-\alpha y} + a_3 e^{\gamma y} + a_4 e^{-\gamma y},$$

where γ is to be determined, and a_1, a_2, a_3, a_4 are constants determined by appropriate boundary conditions on \hat{v} and $\mathcal{D}\hat{v}$. The constants a_1, a_2, a_3, a_4 do not need to be determined.

- (d) Now consider two-dimensional flow (once again with zero spanwise wavenumber) and (dimensional) constant shear flow $U^*(y^*) = S^*y^*$. You are given that the dimensional form of the normal mode is $v^*(x^*, y^*, t^*) = \hat{v}^*(y^*)e^{ik^*(x^*-c^*t^*)}$.
 - (i) Using k^* and S^* to non-dimensionalize, show that \hat{v} satisfies

$$(y-c)(\mathcal{D}^2-1)\hat{v} = \frac{-i}{Re}(\mathcal{D}^2-1)^2\hat{v},$$

for an appropriate choice of Reynolds number.

- (ii) Show that $\hat{\omega} \equiv (\mathcal{D}^2 1)\hat{v}$ is proportional to the spanwise vorticity.
- (iii) Using the substitution $Z = e^{i\pi/6}(y c i\delta^3)/\delta$, where $\delta^3 = 1/Re$, show that $\hat{\omega}$ satisfies Airy's equation:

$$\frac{d^2}{dZ^2}\hat{\omega} - Z\hat{\omega} = 0.$$

(iv) You may assume that the general solution to Airy's equation is

$$\hat{\omega} = a_1 A i(Z) + a_2 B i(Z),$$

where Ai and Bi are Airy functions of the first and second kind, and a_1 and a_2 are arbitrary constants. Using variation of parameters or otherwise, find the general form for the solution $\hat{v}(y)$ with four arbitrary constants, determined by no-slip and no-flux boundary conditions imposed at $y = y_1$ and $y = y_2$. (You are not required to impose these conditions.)

Part III, Paper 331

UNIVERSITY OF

- $\mathbf{4}$
- (a) Consider the general *n*-dimensional linear system for perturbations from some base state \mathbf{q}_b :

$$\frac{d\mathbf{q}}{dt} = \mathsf{L}\mathbf{q}; \quad \mathbf{q} \in \mathbb{C}^n; \ \mathbf{q}(0) = \mathbf{q}_0 = \sum_{k=1}^n \phi_k \mathbf{v}_k,$$

where the \mathbf{v}_k are the normalized eigenvectors of the square-invertible matrix L, ordered by the real part of the associated eigenvalues, i.e. $\operatorname{Re}(\lambda_1) \ge \ldots \ge \operatorname{Re}(\lambda_n)$.

- (i) Define the matrix exponential $B \equiv \exp[Lt]$ (You may assume that B is invertible.)
- (ii) Define the matrix norm B.
- (iii) If L is normal, show that the gain G(t)

$$G(t) \equiv \max_{\mathbf{q}(0)\neq 0} \frac{\|\mathbf{q}(t)\|^2}{\|\mathbf{q}(0)\|^2} = \exp[2Re(\lambda_1)t],$$

where $\|(\cdot)\|$ is the conventional Euclidean norm.

- (iv) Define the right singular vectors \mathbf{v} , the left singular vectors \mathbf{u} , and the singular values σ of a matrix B.
- (v) For general L, with $B = \exp[Lt]$, show that $G(t) = \sigma_1^2(t)$, and identify the associated optimal initial condition \mathbf{q}_0 .
- (b) Now consider the linear system describing perturbations **x** from a base state $\mathbf{x}_b = \mathbf{0}$:

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -i\omega_1 & a \\ c & -i[\omega_1 - b] \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{A}\mathbf{x},$$

where a, b, c, d and ω_1 are all real.

- (i) Assume $\mathbf{x}(t) \propto \exp[-i\omega t]$. Derive a condition for \mathbf{x}_b to be unstable. Henceforth assume a = 1, b = c = 10/Re.
- (ii) Show that $\omega \simeq \omega_1 \pm i \sqrt{10/Re}$ as $Re \to \infty$.
- (iii) Calculate the eigenvalues of A and show that their properties as *Re* varies are consistent with the condition derived in (i).
- (iv) Identify the value(s) of $Re = Re_N$ for which A is normal.
- (v) Calculate the eigenvectors of A for $Re = Re_N$, and demonstrate that they are orthogonal.
- (vi) Identify the initial relationship between $x_1(0)$ and $x_2(0)$ associated with the largest relative growth of the perturbation **x** when $Re = Re_N$.

END OF PAPER