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State the Papkovich–Neuber representation for the velocity and pressure in Stokes
flow. Explaining your choice of trial harmonic potential, find the velocity u(x), strain rate
e(x) and vorticity ω(x) in the Stokes flow due to a point force Fδ(x) acting at the origin
of an unbounded viscous fluid.

A force-free couple-free rigid sphere of radius a is placed in an unbounded strain flow
with uniform strain rate E. Find the perturbation to the flow arising from the presence
of the sphere.

Two rigid spheres of radius a are placed far apart in unbounded fluid, which is
otherwise at rest. The first sphere is acted on by a force F and is couple free. The second
sphere is force free and couple free. By considering the leading-order interactions, explain
why the first sphere moves with velocity

U = U0 −
15a4

4R6
(U0·R)R+O(U0a

5/R5), (1)

where U0 is the velocity that the first sphere would have if the second sphere were absent,
and R is the vector distance between the centres of the spheres.

Assume that U0·R 6= 0. Show that the dissipation is decreased by the presence of
the second sphere. By considering U·U, or otherwise, explain why (1) is consistent with
the minimum dissipation theorem.

Find the leading-order change in the velocity of the first sphere if the second sphere
is still force free, but now prevented from rotating by a suitable couple.

[You may assume the Faxén formulae

U =
F

6πµa
+ u∞ +

a2

6
∇2u∞ , Ω =

G

8πµa3
+

1

2
ω∞ ,

and you may quote the velocity for Stokes flow round a rotating sphere. ]
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State the reciprocal theorem for two Stokes flows in which the body forces are zero.
Prove that the resistance matrix, giving the force F and couple G exerted by a rigid body
when moving with velocity U and angular velocity Ω through surrounding viscous fluid,
is both symmetric and positive definite.

The centreline of a long helical wire of thickness ǫb, with ǫ ≪ 1, is given in Cartesian
coordinates by

X(θ) = b(cos θ, sin θ, θ tanφ), 0 6 θ 6 L cosφ/b, (∗)

where φ is the pitch of the helix (i.e. the constant angle between dX/dθ and the xy-plane)
and L cosφ ≫ b. Show that L is the total length of the wire.

By considering the magnitude and direction of the force exerted by a small line
element, find the axial force Fz and couple Gz exerted by the helix in (i) pure translation
in the z-direction with speed U and (ii) pure rotation about the z-axis with angular velocity
Ω. [Assume that the non-axial components of F and G are zero.]

[You may assume the slender-body formula f(X) = C(I − 1

2
X′X′)·V(X), where C =

4πµ/| ln ǫ|, X′ = dX/ds and s is the arc-length. ]

A micro-organism has the same density as the surrounding fluid. It consists of a
long helical flagellum of the shape given by (∗) attached to a spherical head of radius a.
A ‘molecular motor’ rotates the flagellum about its axis with angular velocity ω relative
to the head. As a result, the micro-organism swims through the fluid with speed U , and
both head and flagellum rotate, as shown below.

Ω0Ω = Ω0 + ω

U

Assume that the hydrodynamic interactions between the helix and the sphere can
be neglected, so that the resistance to motion of the micro-organism is the sum of the
resistances of its separate parts. Find the flagellar rotation rate Ω and show that the
swimming speed is given by

U =
−BD0 ω

(A0 +A)(D0 +D)−B2
,

where A, B and D are the axial resistance coefficients of the helix, as calculated earlier,
and A0 = 6πµa and D0 = 8πµa3 are the resistance coefficients of the sphere.

Find simplified expressions for U in terms of these coefficients for each of the regimes
(i) a ≫ L and (ii) a ≪ (Lb2)1/3. Explain physically why the micro-organism is a slow
swimmer if the head is either too large or too small relative to the flagellum.

For the regime (iii) (Lb2)1/3 ≪ a ≪ L, show that U is approximately independent
of the size of the head, but has a maximum of ωb/2

√
2 with respect to variations of the

pitch angle φ. Comment briefly and physically on these results.
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Surface tension should be neglected in all of these gravity-current problems.

(a) A rigid plane inclined at angle α to the horizontal is coated with a thin film of
viscous fluid of thickness h(x, y, t), where x is the down-slope coordinate and y the cross-
slope coordinate. Use the equations of lubrication theory to derive the evolution equation
for the film thickness.

(b) A fixed volume V of viscous fluid is released at the upwards-pointing apex of
a cone whose sides slope downwards at an angle α to the horizontal. Assuming that the
flow is axisymmetric, and taking x to be the distance down the sloping side, explain how
your analysis in part (a) needs to be adapted to obtain the evolution equation for this
situation.

After a long time the front of the current has travelled a distance xN (t) ≫
(V cosecα)1/3. Find a similarity solution for the thickness h(x, t) and determine xN (t)
from mass conservation. [You do not need to analyse the detailed structure at the front.]

(c) In a two-dimensional flow, a thin film of viscous fluid of thickness h(x, t) lies
on top of a finite horizontal rigid boundary −L 6 x 6 L, and drains over the edges at
x = ±L. Use scaling arguments to show that h ∝ t−1/3 and to determine the expected
form of the long-time similarity solution.

Assuming that the flow is described by lubrication theory subject to boundary
conditions h = 0 at both edges, show that the similarity function H(η) is given implicitly
by an equation of the form

η(H) =

∫ H0

H
F (s) ds ,

where the function F should be determined. Hence determine h0 = h(0, t) in terms of the
various parameters and the constant C given by the beta function

C =

∫
1

0

du

u1/5(1− u)1/2
= B(4

5
, 1
2
) .

Show that H ∼ (1− η)k as η → 1, where 0 < k < 1 is to be found, and deduce that
lubrication theory does not apply in a region close to x = L. Show further that the size
of this region is given by L − x ∼ L(h0/L)

4/3, and comment on the appropriateness, or
otherwise, of the boundary condition h = 0 used earlier.

END OF PAPER
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