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1

Let X ⊂ Rn be open. Define the class of symbols Sym(X,Rk;N). What does it
mean for Φ : X ×Rk → R to be a phase function?

If a ∈ Sym(X,Rk;N) and Φ is a phase function explain how the oscillatory integral

IΦ(a) =

∫

eiΦ(x,θ)a(x, θ) dθ,

defines a linear form on D(X). Show that IΦ(a) ∈ D′(X).

Write Dαδx0
as an oscillatory integral, demonstrating explicitly that the two

distributions are equal.

Can every element of D′(X) be written as an oscillatory integral? Give a proof or
counterexample.

2

Define the space of test functions D(R) and the space of distributions D′(R),
specifying the notion of convergence on each.

(i) Define the principal value p.v.(1/x) and show that it belongs to D′(R). Establish
the identity

p.v.(1/x) =
d

dx
log |x| in D′(R).

(ii) For ϕ ∈ D(R) and m = 2, 3, . . . consider the linear forms

〈Λm, ϕ〉 = lim
ǫ↓0

∫

|x|>ǫ

(

x−mϕ(x) −
m−2
∑

k=0

xk−m

k!
ϕ(k)(0)

)

dx.

Using this definition, show that each Λm defines an element of D′(R) of finite order. By
establishing the identity

〈

Λm, ϕ′
〉

= m 〈Λm+1, ϕ〉 ,

or otherwise, show that

Λm = cm

(

d

dx

)m

log |x| in D′(R),

where the cm are constants you should determine.
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Let P be an Nth order polynomial in λ = (λ1, . . . , λn). What does it mean to say
that P (D) is elliptic? Show that if P (D) is elliptic then |P (λ)| & 〈λ〉N for |λ| sufficiently
large.

Let X ⊂ Rn be open. Define the Sobolev space Hs(Rn) and local Sobolev space
Hs

loc(X). Prove that if u ∈ D′(Rn) has compact support then u belongs to a Sobolev
space of sufficiently negative index.

Show that if P (D) is an Nth order elliptic partial differential operator and P (D)u ∈
Hs

loc(X) then u ∈ Hs+N
loc (X). Elementary facts about Sobolev spaces can be used, provided

they are clearly stated.

Give an example of a first order elliptic partial differential operator. Does there
exist an elliptic differential operator in three variables (x1, x2, x3) whose order is odd?
Justify your answer.
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