MATHEMATICAL TRIPOS Part III

Thursday, 7 June, 2018 $\,$ 9.00 am to 12:00 pm $\,$

PAPER 323

QUANTUM INFORMATION THEORY

Attempt **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 (i) Let $p := \{p_x\}_{x \in J}$ and $q := \{q_x\}_{x \in J}$ denote two probability distributions such that $p \ll q$. Their relative entropy is defined as

$$D(p||q) := \sum_{x \in J} p_x \log\left(\frac{p_x}{q_x}\right)$$

It can be shown that $D(p||q) \ge 0$. Using this fact, prove that the quantum relative entropy $D(\rho||\sigma)$ of two states ρ and σ , for which $\operatorname{supp} \rho \subseteq \operatorname{supp} \sigma$, satisfies $D(\rho||\sigma) \ge 0$.

(ii) Let $\Lambda : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^{d'})$ be a linear map and let

$$J := (\Lambda \otimes \mathrm{id}) |\Omega\rangle \langle \Omega|, \tag{1}$$

where

$$|\Omega\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |i\rangle \otimes |i\rangle,$$

with $\{|i\rangle\}_{i=1}^d$ being an orthonormal basis in \mathbb{C}^d .

Prove that

(1) $\operatorname{Tr}(A\Lambda(B)) = d\operatorname{Tr}(J(A \otimes B^T)).$

[Hint: Recall that any bipartite pure state $|\psi_{AB}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$, where $\mathcal{H}_A \simeq \mathbb{C}^d$ and $\mathcal{H}_B \simeq \mathbb{C}^k$, can be written in the form

 $(I_d \otimes R) |\Omega\rangle$

for some $R \in \mathcal{B}(\mathbb{C}^d, \mathbb{C}^k)$./

- (2) Λ is completely positive if and only if $J \ge 0$;
- (3) Λ is trace-preserving if and only if $\operatorname{Tr}_{\mathbb{C}^{d'}} J = \tau_d$, where τ_d denotes the completely mixed state in $\mathcal{D}(\mathbb{C}^d)$;
- (4) Λ is unital if and only if $\operatorname{Tr}_{\mathbb{C}^d} J = I_{d'}/d$, where $I_{d'}$ denotes the identity operator in $\mathcal{B}(\mathbb{C}^{d'})$.

UNIVERSITY OF

- **2** Consider a pair of quantum states $\rho, \sigma \in \mathcal{D}(\mathcal{H})$.
- (i) Define the trace distance $D(\rho, \sigma)$ and the fidelity $F(\rho, \sigma)$.
- (ii) Prove that $D(\rho, \sigma) = \max_{0 \leq \Lambda \leq I} \operatorname{Tr}(\Lambda(\rho \sigma)).$
- (iii) State and prove Uhlmann's theorem, clearly stating any other result that you use in the proof.
- (iv) Let Λ denote a so-called *measure-and-prepare* quantum channel; its action on a state ρ is as follows. A measurement described by the POVM $\{E_m\}_{m=1}^k$ is performed on the state ρ and if the m^{th} outcome is obtained then the state $|m\rangle\langle m|$ is prepared. Write an expression for $\Lambda(\rho)$ and find a set of Kraus operators for Λ .
- (v) Let $p_m = \text{Tr}(E_m \rho)$ and $q_m = \text{Tr}(E_m \sigma)$ denote the probabilities of getting the m^{th} outcome when a measurement, given by the POVM $\{E_m\}_{m=1}^k$ defined in (iv), is performed on the states ρ and σ respectively. Let $D(p,q) := \frac{1}{2} \sum_m |p_m q_m|$ denote the classical trace distance between the probability distributions $p = \{p_m\}$ and $q = \{q_m\}$. Prove that $D(\rho, \sigma) \ge D(p, q)$.

[*Hint: Make use of (iv)*]

3 (i) The Holevo capacity (or Holevo information) of a memoryless quantum channel Λ is defined as follows:

$$\chi^*(\Lambda) := \max_{\{p_x, \rho_x\}} \left\{ S\left(\Lambda(\sum_x p_x \rho_x)\right) - \sum_x p_x S\left(\Lambda(\rho_x)\right) \right\}.$$
(1)

What is the operational significance of this quantity? Justify why the maximization can be restricted to ensembles of pure states, i.e., the states ρ_x can be chosen to be pure.

(ii) For a quantum channel $\Lambda : \mathcal{D}(\mathcal{H}_A) \to \mathcal{D}(\mathcal{H}_B)$, write an expression for $\chi^*(\Lambda)$ in terms of the mutual information.

(iii) Prove that the Holevo capacity is superadditive, i.e., for any pair of memoryless quantum channels Λ_1 and Λ_2 ,

$$\chi^*(\Lambda_1 \otimes \Lambda_2) \geqslant \chi^*(\Lambda_1) + \chi^*(\Lambda_2).$$

(iv) Let $\underline{x} = (x_1, \ldots, x_d)$ and $\underline{y} = (y_1, \ldots, y_d)$ be two *d*-dimensional real vectors. What is meant by the statement " \underline{x} is majorized by \underline{y} (denoted $\underline{x} \prec \underline{y}$)"? What is meant by $\rho \prec \sigma$ where ρ and σ are two states on a Hilbert space of dimension *d*?

(v) Let $|\Psi_{AB}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ be a bipartite pure state; let $d_A := \dim \mathcal{H}_A$ and $d_B := \dim \mathcal{H}_B$. Write its Schmidt decomposition and define its Schmidt rank. Prove that the Schmidt rank of $|\Psi_{AB}\rangle$ cannot be increased by LOCC, clearly stating any theorem that you use in your proof.

[TURN OVER

UNIVERSITY OF

4 (i) Let ρ_{ABC} be a tripartite state. State the strong subadditivity (SSA) property of its von Neumann entropy $S(\rho_{ABC})$.

4

(ii) Let $I_c(\Lambda, \rho)$ denote the *coherent information* of a quantum channel $\Lambda : \mathcal{D}(\mathcal{H}_Q) \to \mathcal{D}(\mathcal{H}_B)$ when the input state is $\rho \in \mathcal{D}(\mathcal{H}_Q)$. Give its definition and prove that it satisfies the quantum data processing inequality, namely

$$S(\rho) \ge I_c(\Lambda_1, \rho) \ge I_c(\Lambda_2 \circ \Lambda_1, \rho),$$

where Λ_1 and Λ_2 are quantum channels, and $\Lambda_2 \circ \Lambda_1$ denotes the quantum channel obtained by their composition.

[Remark: a clearly drawn and labelled figure would be helpful.]

(iii) Let $\rho := \sum_{i,j=1}^{d} \rho_{ij} |i\rangle \langle j|$ denote a state in $\mathcal{D}(\mathbb{C}^d)$, and let $\tilde{\rho} \in \mathcal{D}(\mathbb{C}^d)$ be the following state:

$$\tilde{\rho} := \sum_{i=1}^{d} \rho_{ii} |i\rangle \langle i|.$$

Prove that the von Neumann entropy of these two states satisfy the following inequality: $S(\tilde{\rho}) \ge S(\rho)$.

CAMBRIDGE

5 (i) State the generalized measurement postulate in the case in which the initial state of the system to be measured is a mixed state. Under what condition does a generalized measurement reduce to a projective measurement?

(ii) Consider a measurement, described by a POVM $\{E_m\}_{m=1}^J$, on the state of a quantum system Q, which is initially in a state ρ , and let the measuring device D be initially in the pure state $|\varphi_D\rangle\langle\varphi_D|$. The Hilbert space \mathcal{H}_D associated to the measuring device has dimension dim $\mathcal{H}_D = J$. Such a measurement can be described by a quantum operation Λ which acts on the initial uncorrelated state of the composite system QD as follows:

$$\Lambda(\rho \otimes |\varphi_D\rangle\langle\varphi_D|) = \sum_m \sqrt{E_m} \rho \sqrt{E_m} \otimes |m_D\rangle\langle m_D|,$$

where $\{|m_D\rangle\}_{m=1}^J$ is an orthonormal basis in \mathcal{H}_D . Find a set of Kraus operators of Λ .

(iii) Consider the following two states

$$\rho_{XQD} := \sum_{x=1}^{J} p_x |x_X\rangle \langle x_X| \otimes \rho_x \otimes |\varphi_D\rangle \langle \varphi_D|,$$

and

$$\sigma_{XQD} := \sum_{x,m=1}^{J} p_x |x_X\rangle \langle x_X| \otimes \sqrt{E_m} \rho_x \sqrt{E_m} \otimes |m_D\rangle \langle m_D|,$$

where $\{|x_X\rangle\}_{x=1}^J$ denotes an orthonormal basis in a Hilbert space \mathcal{H}_X of dimension J and $\rho_x \in \mathcal{D}(\mathcal{H}_Q)$ for each x = 1, 2, ..., J. Prove that

$$I(X:D)_{\sigma} \leqslant I(X:Q)_{\rho},$$

carefully justifying your steps.

(iv) Let $\rho = \sum_{i=1}^{n} p_i \rho_i$, where the states ρ_i have mutually orthogonal supports. Prove that

$$S(\sum_{i=1}^{n} p_i \rho_i) = H(p) + \sum_{i=1}^{n} p_i S(\rho_i),$$

where H(p) is the Shannon entropy of the probability distribution $\{p_i\}_{i=1}^n$.

(v) Prove that $I(X:Q)_\rho$ is equal to the Holevo $\chi\text{-quantity of the ensemble }\{p_x,\rho_x\}_{x=1}^J.$

END OF PAPER

Part III, Paper 323