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1 Accretion on to compact objects

(a) Consider a disk around a black hole of mass M accreting at a constant rate Ṁ .
Recalling that the Schwarzchild radius is 2GM/c2 (where c is the speed of light), show
that the energy released per unit time via accretion is ∼ Ṁc2.

(b) Next consider a magnetised neutron star of mass M exhibiting a dipole field.
The star is encircled by a disk aligned with the dipole so that the magnetic field strength
at the disk midplane is B ∼ µ/r3, where µ is the dipole moment. The disk accretes at a
rate Ṁ = 2πrΣv (where Σ is the disk’s surface density and v is the radial speed of the
accretion flow) and its angular thickness ε = H/r is constant, where H is the disk scale
height.

The star’s magnetic field truncates the disk at a radius rm. Suppose that the disk
is disrupted when magnetic pressure B2/(8π) is greater than the ‘ram pressure’ 1

2ρv
2 of

an accretion flow in radial free fall from infinity (where ρ is density). Hence show that

rm ∼
(

ε2µ4

GMṀ2

)1/7

.

(c) The magnetic dipole rotates at a rate Ωm. Near rm the disk plasma will be
accelerated to this rate and possibly flung from the system in what is termed ‘propeller
flow’. Give a condition on rm for this to occur.

(d) Briefly comment on the long-term evolution of the neutron star due to its
magnetic connection to the disk.

(e) The evolution of the disk is governed by the following equations

∂Σ

∂t
=

1

2πr

∂

∂r

[(
dh

dr

)−1 ∂G
∂r

]
, G = −2πνΣr3

dΩ

dr
,

where h(r) is the specific angular momentum, G the viscous torque, and ν the turbulent
kinematic viscosity (a constant). The disk receives mass at its outer boundary rout at
a rate Ṁ , and receives a nonzero magnetic torque Tm at its inner radius r = rin (not
necessarily rm).

Assume the disk is in Keplerian rotation and in steady state. Find an expression for
Σ in terms of ν and the dimensionless parameter λ = Tm/[h(rin)Ṁ ]. Plot Σ as a function
of r for λ� 1 and λ� 1. What regimes do these cases correspond to?

Suppose rin = rm and the magnetic torque Tm is approximately r2B2H/(4π)
evaluated at rm, i.e. the azimuthally and vertically averaged Maxwell stress. Using part
(b), find an estimate of the value of λ.
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2 Vertical structure of a slowly cooling disk

The governing equations of a thin astrophysical disk composed of ideal gas may be
written as

Dtρ = −ρ∇ · u, Dtu = −1

ρ
∇P −∇Φ,

1

γ − 1

(
DtP −

γP

ρ
Dtρ

)
= H− C, P =

k

µmp
ρT,

where Dt = ∂t + u · ∇ is the total derivative, and ρ, u, P , and T are density, velocity,
pressure, and temperature respectively, while γ, k, µ, and mp are adiabatic index,
Boltzmann’s constant, molecular weight, and the mass of a proton. The heating and
cooling rates are H = (9/4)αΩP and C = AT 1+β, where Ω is the disk’s orbital frequency
and α, A and β are positive constants. Finally, the gravitational potential of the central
star is Φ = −MG/r, where M is the star’s mass, and r is spherical radius.

(a) Suppose the disk is thin. Give the approximate expression for Φ usually employed
when describing thin disks.

(b) At a fixed cylindrical radius, write down the equations controlling the equilib-
rium vertical structure of the disk. Solve these equations, given that T = T0 (a constant)
at z = 0. Write your solutions for T , ρ, and P in terms of disk semi-thickness H defined
so that there is vacuum for |z| > H.

(c) Suppose the equilibrium is slightly perturbed. Give an order of magnitude
treatment showing that the timescale upon which vertical equilibrium is re-established is
∼ Ω−1.

(d) Consider now a non-turbulent disk that is cooling on a very long timescale
� Ω−1. Using part (c), argue that the following equations adequately describe the slow
evolution of the disk’s vertical structure:

∂zP = −Ω2zρ,
1

γ − 1

(
DtP −

γP

ρ
Dtρ

)
= −AT 1+β,

with P = kρT/(µmp).

(e) Change independent variables from (z, t) to (ξ, t), where the new similarity
variable ξ is defined through z = ξη(t), with η yet to be determined but satisfying η = 1
at t = 0. Next assume the solution has the following form:

ρ = ρ̃(ξ)/η(t), T = T̃ (ξ)η(t)2, P = P̃ (ξ)η(t).

Show that
η = (1 + Ct)−1/(1+2β),

where C is a positive constant. Write down a set of equations in ξ for ρ̃, T̃ , and P̃ .

Using part (b), or otherwise, solve these equations given that at t = 0 the midplane
temperature is T0. Find an expression for T (z, t) in terms of a time-dependent semi-
thickness H(t), the form of which you should give. Briefly describe in words how the disk
evolves.
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3 Oscillatory convection in protoplanetary disks

Consider an accretion disk with a radially varying thermal structure. A local patch
of the disk may be represented in the shearing sheet by the governing equations

∂tu + u · ∇u = − 1

ρ0
∇P − 2Ω ez × u + 3Ω2x ex −N2 θ ex,

∂tθ + u · ∇θ = ux + ξ∇2θ, ∇ · u = 0,

where u, P , and ρ0 are the velocity, pressure, and density, respectively. In addition, θ is
the ‘potential temperature’ perturbation, and ξ is thermal diffusivity. Finally, Ω is the
orbital frequency of the shearing sheet and N is the radial buoyancy frequency of the gas.
All of ρ0, Ω, N , and ξ are constants.

(a) Derive the vorticity equation:

∂tω +∇ ·T = −N2∇θ × ex,

where ω = ∇ × u + 2 Ω ez, and the components of the tensor T are given by Tij =
uiωj − ωiuj . What can be said about the x-component of vorticity?

[You may need the identities:

1
2∇A2 = A · ∇A + A×∇×A,

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + B · ∇A−A · ∇B.]

(b) Demonstrate that a steady solution to the governing equations is u =
−(3/2)Ωx ey, θ = 0, and P = a constant.

(c) Perturb this steady state with disturbances u′, P ′, and θ′ proportional to
exp(st + ikz), where s is a (possibly complex) growth rate and k a (real) vertical
wavenumber.

Write down the linearised equations governing the perturbations. Show that
u′z = P ′ = 0. Hence derive the dispersion relation:

s3 + βs2 + (N2 + Ω2)s+ βΩ2 = 0,

where β = ξk2 > 0.

(d) Suppose that n2 = N2/Ω2 and |n2| � 1. Consider the expansion, s =
s0 + s1n

2 + . . . .

Show that the dispersion relation supports two epicycles with s0 = ±iΩ plus a third
energy mode that decays at a rate you must find.

Discard the third mode and find the next order correction s1 for the two epicyclic
modes. Show that their instability criterion is N2 < 0 and that their maximum growth
rate to leading order is −(1/4)N2/Ω.
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