
MATHEMATICAL TRIPOS Part III

Thursday, 31 May, 2018 9:00 am to 12:00 pm

PAPER 316

PLANETARY SYSTEM DYNAMICS

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None

Treasury Tag

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1

(i) Assume that a comet orbits a star of mass M⋆ on a highly elliptical orbit for
which its apocentre distance Q is much larger than its pericentre distance q. Its orbit is
coplanar and prograde with that of a planet of mass Mp ≪ M⋆ that is on a circular orbit
at a distance ap, where q ≪ ap. Show that when the comet has a close encounter with
the planet, their relative velocity is vrel ≈ vp[3 − 2(2q/ap)

1/2]1/2, where vp is the orbital
velocity of the planet, and hence determine the range of impact velocities that the planet
might experience when colliding with comets on coplanar orbits.

(ii) The comet’s orbit is not near any mean motion resonances with the planet.
Consider the path of the comet’s orbit in the frame rotating with the planet. Describe the
region of this phase space that the comet’s orbit has covered after many orbits.

(iii) Determine the fraction of time that the comet spends at radii from r to r+ dr,
and hence show that the density of comets per cross-sectional area of the phase space from

(ii) in the vicinty of the planet is π−2Q−1/2a
−3/2
p (1− q/ap)

−1/2.

(iv) The planet is spherical and has constant density ρp. Determine the constraint
on the planet’s mass for gravitational focussing to be ignored when considering interactions
between the comet and the planet.

(v) Assuming that the constraint from (iv) is met, determine the mean time between
collisions.

(vi) How does the collision time scale with Q, q, Mp and ap if the comet is initially
on an orbit that is inclined by I ≪ 1 to the planet’s orbit.

(vii) Close encounters between the comet and planet can also result in the comet
becoming unbound from the star. For a hyperbolic encounter with the planet in which
the relative velocity at large separations is v∞ and the impact parameter is b, the change
in the comet’s velocity vector has a magnitude ∆v = 2v∞[1 + b2v4

∞
/(GMp)

2]−1/2. Show
that the time between encounters that eject the comet scales ∝ Q1/2.

(viii) Determine the condition on the comet’s apocentre that determines whether it
is more likely to be ejected by the planet or to collide with it, and hence sketch how the
comet’s lifetime depends on Q.
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(i) Consider a dust particle orbiting a star of mass M⋆ for which the ratio of the
radiation force to that of stellar gravity is β. Poynting-Robertson drag results in the
particle’s semimajor axis a and eccentricity e evolving according to

ȧ = −A
1

a

2 + 3e2

(1− e2)3/2
,

ė = −A
5

2a2
e

(1− e2)1/2
,

where A = βGM⋆/c and G and c are constants. Derive the result that C = a(1− e2)e−4/5

remains constant along the particle’s trajectory.

(ii) Derive expressions for the evolution of the particle’s pericentre distance q and
apocentre distance Q, and hence show that dQ/dq = (Q/q)2(3q + 5Q)/(5q + 3Q).

(iii) The particle is started on an orbit with a pericentre distance q0 and apocentre
distance Q0 ≫ q0. Quantifying wherever possible, sketch the trajectory of the particle’s
orbit on a plot of Q/q0 versus q/q0, explaining why this is very roughly described by two
phases of evolution.

(iv) Derive the time for the particle started on a circular orbit at semimajor axis a0
to reach the star.

(v) Derive a general expression for the time for the particle to reach the star
from an orbit with an eccentricity e0, and hence show that for e0 → 1, this time is

(4/5)A−1Q
1/2
0 q

3/2
0 . [You may use the result that in this limit

∫ e0
0

e3/5(1 − e2)−3/2de ≈
(1/

√
2)(1 − e0)

−1/2].

(vi) Dust particles with a range of β are created in the break-up of planetesimals
on nearly circular orbits in a ring at a radius rb from the star. Derive expressions for
the pericentre and apocentre distances of the particles’ orbits immediately after they are
created, and hence sketch these orbits relative to the planetesimal ring for a range of β
and describe the resulting dust distribution.

(vii) Ignoring collisions between the dust grains, plot the lifetime of the dust grains
as a function of β.
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(i) Consider a test particle orbiting a star in the same plane as a coplanar system of
N planets. The particle is on a low eccentricity orbit far from any of the planets and their
mean motion resonances. Perturbations from the planets result in a disturbing function

R = na2





1
2
Ae2 +

N
∑

j=1

Aj[eej cos (̟ −̟j)]



 ,

where n, a, e, ̟ are the mean motion, semimajor axis, eccentricity and longitude of
pericentre of the particle’s orbit, respectively, orbital elements with subscript j refer to
those of planet j, Aj is a negative function of αj = a/aj , a, and the planet to star mass

ratio Mj/M⋆, and A = −∑N
j=1Ajf(αj), where f is a function of αj. Given Lagrange’s

planetary equations, ė ≈ −(na2e)−1∂R/∂̟ and ˙̟ ≈ (na2e)−1∂R/∂e, show that the
evolution of the particle’s complex eccentricity z = e exp (i̟) is given by

ż = iAz + i

N
∑

j=1

Ajzj . (∗)

(ii) Any evolution of the planet’s orbits due to their mutual perturbations is
encapsulated by zj =

∑N
i=1 eji exp [i(git+ βi)]. Explain what conditions this implies for

the planets’ orbits, and the meaning of the constants eji, gi and βi.

(iii) Hence solve equation (∗) for the evolution of z, and describe this motion on an
Argand diagram, explaining also the meaning of the terms proper and forced eccentricity.

(iv) Show that the forced eccentricity for N = 1 is zf = z1/f(α1).

(v) To first order in eccentricity e, an ellipse of semimajor axis a is a circle of radius
a centred on the centre (rather than the focus) of the ellipse. Use this to describe, both
quantitatively and with a sketch, the physical space covered by test particles, all of which
have the same semimajor axis and proper eccentricity, but randomly distributed proper
longitudes of pericentre.

(vi) Compare this with the space covered by particles which have a range of
semimajor axes in the range a±∆a and proper eccentricities that are much smaller than
their forced eccentricities (i.e., where ep/ef ≪ ∆a/a ≪ 1).

(vii) To determine the spatial distribution of particles within the space covered
consider that the fraction of time a particle spends at different points along its orbit is
inversely proportional to its orbital velocity. Show that to first order in eccentricity that
the line density of particles on the same orbit is ∝ 1 − e cos θ, where θ is the longitude
relative to the pericentre direction.

(viii) Hence comment on the relative densities of particles near the direction of the
forced pericentre and forced apocentre in the two scenarios described in (v) and (vi), and
on whether observations of the particle distribution might be able to distinguish between
these scenarios.
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(i) A particle is on an elliptical orbit of semimajor axis a and eccentricity e ≪ 1
about a central star. Explain with help of a diagram the meaning of the terms true
anomaly (f), eccentric anomaly (E), mean anomaly (M) and mean motion (n).

(ii) Use your diagram to derive an expression that relates E to f and so show that
the distance of the particle from the star is r = a(1 − e cosE).

(iii) Given Kepler’s equation, M = E−e sinE, show that to first order in eccentricity
r/a ≈ 1− e cosM and f −M ≈ 2e sinM .

(iv) Consider the path of the particle in a frame centred on a point G that is offset
from the star by a constant distance ag which rotates about the star at a constant rate
ng, where |(a − ag)/ag| ≪ 1 and |(n − ng)/ng| ≪ 1. The x-axis of this frame points in
the direction from the star to G, with the y-axis orthogonal in the orbital plane in the
direction of motion. The particle is started at time t = 0 at the same longitude as G, at
which time the pericentre direction is ahead of the particle by an angle ̟. Make a new
sketch showing the relation between the M , f , ̟ and the rotating frame centred on G.

(v) Keeping terms to first order in small quantities, derive the evolution of the
particle’s location in the rotating frame to be x/a ≈ (a − ag)/a − e cos (nt−̟) and
y/a ≈ (n− ng)t+ 2e sin (nt−̟) + 2e sin̟.

(vi) Consider now a coplanar system in which two planets, of masses m1 and m2,
orbit a star of mass m⋆. The reference frame (x′, y′) rotates at angular velocity n0 =
√

Gma−3
0 , wherem = m⋆+m1+m2 and a0 is the mean distance of the centre of mass of the

planets from the star. The coordinate system (ξ, η) is defined such that x′/a0 = 1+µ1/3ξ
and y′/a0 = µ1/3η, where µ = (m1 + m2)/m ≪ 1. Retaining terms up to lowest order
in µ, the resulting equations of motion for this three-body problem can be solved far
from close encounters to find that for planet j: ξj ≈ D1j cos (n0t) + D2j sin (n0t) + D3j

and ηj ≈ −2D1j sin (n0t) + 2D2j cos (n0t) − 3
2
D3jn0t + D4j , where Dij are constants of

integration. Show that this is consistent with the unperturbed motion derived in (v),
assuming that (aj − a0)/a0 ≪ 1, and determine the orbital elements of the individual
planets (aj , ej , ̟j) in terms of the constants Dij .
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