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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂p

∂t
+ u · ∇p+ γp∇ · u = 0, (2)

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −ρ∇Φ−∇p+
1

4π
(∇×B)×B, (3)

∂B

∂t
= ∇× (u×B) , (4)

∇2Φ = 4πGρ. (5)

Conservation laws for momentum

∂(ρu)

∂t
+∇ · Π̂ = 0, Π̂ij = ρuiuj +

(

p+
B2

8π

)

δij −
BiBj

4π
, (6)

and energy

∂

∂t

[

ρ

(

u2

2
+ e

)

+
B2

8π

]

+∇ ·
[

ρu

(

u2

2
+ h

)

+ c
E×B

4π

]

= 0. (7)

You may assume that for any scalar function f

∇f =
∂f

∂R
eR +

1

R

∂f

∂φ
eφ +

∂f

∂z
ez (cylindrical coordinates) (8)

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ (spherical coordinates). (9)

You may assume that for any vector C

(∇×C)×C = (C · ∇)C− 1

2
∇

(

|C|2
)

, (10)

∇ ·C =
1

R

∂(RCR)

∂R
+

1

R

∂Cφ

∂φ
+

∂Cz

∂z
(cylindrical coordinates) (11)

∇ ·C =
1

r2
∂(r2Cr)

∂r
+

1

r sin θ

∂(Cθ sin θ)

∂θ
+

1

r sin θ

∂Cφ

∂φ

(spherical coordinates). (12)

For any vectors C and D

∇× (C×D) = C(∇ ·D) + (D · ∇)C−D(∇ ·C)− (C · ∇)D, (13)

∇ · (C×D) = D · (∇×C)−C · (∇×D). (14)

You may refer to these formulae in your solutions, but, please, make sure to provide
sufficient details when using them.

Part III, Paper 314



3

1 (a) Derive the equation describing the time evolution of the vorticity ω = ∇×u
in an ideal, isentropic, unmagnetized fluid, neglecting gravity:

∂ω

∂t
= ∇× (u× ω) .

(b) Derive the conservation law for the kinetic helicity u · ω in the form

∂

∂t
(u · ω) +∇ · FHk

= 0,

where FHk
is the flux of kinetic helicity, and show an explicit expression for FHk

.

(c) Find the conditions under which kinetic helicity u ·ω is conserved in the Lagrangian
sense, i.e.

d

dt
(u · ω) = 0.
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2 (a) Consider a 1-dimensional flow in a polytropic gas with adiabatic index γ. A
stationary shock at z = 0 separates region 1 (z > 0, where ρ = ρ1, p = p1 and u = u1)
from region 2 (z < 0, where ρ = ρ2, p = p2 and u = u2). Derive the jump conditions
across the shock (Rankine-Hugoniot relations) in the form

ρ1u1 = ρ2u2,

p1 + ρ1u
2
1 = p2 + ρ2u

2
2,

u1

(

ρ1
u21
2

+
γp1
γ − 1

)

= u2

(

ρ2
u22
2

+
γp2
γ − 1

)

.

Provide physical motivation for these relations.

Adopting the limit of a strong shock (M1 ≫ 1, M2
1 = u21/(γp1/ρ1)) in these relations,

derive expressions for ρ2/ρ1, u2/u1, and p2/(ρ1u
2
1).

(b) Massive young stellar clusters contain many massive stars in a small volume of space,
that explode as supernovae over an interval of time. This results in a continuous injection
of energy in a small volume (rather than instantaneous as in the case of a single supernova
explosion). Such multiple explosions result in the so-called superbubble phenomenon —
formation of a bubble of hot expanding gas, separated from the surrounding medium by
a fast, strong shock.

Consider a model of a (spherically-symmetric) superbubble evolution in which the injection
of energy can be described as

E(t) = Ėt, Ė = const, (1)

and there are no radiation losses. A strong shock separating expanding gas from the
ambient medium of density ρ1 and negligible pressure is located at R(t).

Adiabatic expansion of the superbubble can be described by a similarity solution behind
the shock in the form

ρ(r, t) = ρ1f(η), p(r, t) = ρ1Ṙ
2g(η), and u(r, t) = Ṙh(η), (2)

where the (dimensionless) functions f , g, and h depend only on a single similarity variable
η = r/R(t), with

R(t) = αĖaρb1t
c. (3)

Determine the values of the constants a, b, and c.

(c) Derive the self-similar version of the continuity equation for the superbubble problem,
i.e. show, using results (2)-(3), that the continuity equation reduces to an equation
containing only the functions f , h, and the similarity variable η.

Formulate boundary conditions for f , g, h.

(d) Derive the expression allowing one to fix the value of the constant factor α in
equation (3). What physical conservation law does it use?
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3 (a) An axisymmetric distribution of dark matter gives rise to the potential in the
form (in cylindrical coordinates)

Φ(R, z) = Φ0

(

R0√
R2 + λ2z2

)β

, (1)

where Φ0 < 0, R0, λ and 0 < β < 1 are constants. Compute the distribution of dark
matter density ρ(R, z) that gives rise to such a potential.

A thin, cold, axisymmetric, non-self-gravitating gaseous disc orbits at the midplane of this
potential (at z = 0). Neglecting any possible magnetic and thermal stresses, compute the
angular frequency Ω(R), at which the disc rotates at a distance R.

(b) The disc from part (a) is threaded by the global axisymmetric magnetic field
characterized by the magnetic flux function Ψ(R, z). Write down how the components of
the poloidal field Bp = (BR, Bz) are related to Ψ.

It is known that in some interval of radii the behavior of the flux function at the disk
surface is given by

Ψ(R, 0) = Ψ1 +Ψ0

(

R

R0

)δ

, (2)

where Ψ1, Ψ0, δ > 0 are constants. Assume also that at z = 0 the poloidal magnetic field
lines make an angle α (independent of R in this region) with respect to the vertical axis
(BR > 0).

Find how the Bz component of the field varies with height z near the z = 0 plane by
computing ∂Bz/∂z at z = 0.

(c) The field threading the disc is strong enough to potentially launch a cold wind from
its surface. Show that there is a minimum value of the field line inclination angle α near
the disk midplane, for which this becomes possible, given the potential Φ(R, z) of this
problem. Demonstrate that α is a function of λ and β and find the explicit dependence.
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4 (a) Consider an axisymmetric MHD configuration, which is in differential rotation
with a prescribed angular speed Ω(R, z), so that u = RΩ(R, z)eφ. Show that the magnetic
field’s evolution is described by the following equation:

∂B

∂t
= R (Bp · ∇Ω) eφ, (1)

where Bp is the poloidal component of the magnetic field.

(b) Consider an axisymmetric disc orbiting in a point mass potential of a central star
(in z = 0 plane). Imagine, that at time t = 0 an initial configuration of a weak field inside
the disk is somehow established in the form

B(R, t = 0) = B0

R0

R
eR, (2)

(i.e. purely radial field) where B0 and R0 are constants. Determine the subsequent time
evolution of the field driven by the rotation of the disc by finding the solutions for the
poloidal and toroidal field components as a function of R and t. Here and below neglect
the back-reaction of the magnetic field on the disc rotation, as well as the self-gravity of
the disc.

Show that at every radius R, the toroidal field component Bφ becomes comparable in
amplitude to the magnitude of the poloidal field |Bp| after a time equal to a fixed fraction
of the local orbital time.

(c) Suppose further that the radial profile of thermal gas pressure in the disc is

p(R) = p0

(

R0

R

)2

, (3)

where p0 ≫ B2
0/(8π) is a constant.

Show that, as a result of field evolution, at late times there is always a radius Req(t) at
which magnetic and thermal pressures are equal, and magnetic pressure dominates for
R < Req.

Show that Req(t) ∝ tζ and determine the value of the exponent ζ.

END OF PAPER
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