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1 Consider the Newtonian-gauge metric perturbation (negative gravitational poten-
tial) ϕ in the presence of local-type primordial non-Gaussianity

ϕ(~x) = ϕG(~x) + fNL

(

ϕ2
G(~x)−

〈

ϕ2
G(~x)

〉)

,

where the total metric perturbation gets contributions from the Gaussian potential ϕG

and self-coupling of the Gaussian potential with coupling strength fNL.

(i) Splitting the perturbations into a long- and a short-wavelength part ϕ = ϕs+ϕl,
show that at leading order in short and long modes (ignoring squares of short modes)

ϕs = ϕG,s(1 + 2fNLϕG,l) .

Squaring the short part of the density fluctuations, show that the short-scale variance of
the density gets modulated as σ2s =

〈

δ2s
〉

s
= σ2G,s(1 + 4fNLϕG,l). Here 〈·〉s denotes an

average over realisations of the short modes at fixed long mode. For this purpose, use
that the metric perturbation is related to the matter overdensity δ in Fourier-space by
the Poisson equation α(k)ϕ = δ, where α(k) = 2k2/(3H2Ωm). For the purposes of this
derivation you may consider ϕG,l as a constant background over the support of the short
modes.

(ii) The number density of haloes n(ν) is a function of the peak height ν = δc/σG,s.
In the presence of long-wavelength density fluctuations δl, the collapse threshold gets
lowered δc → δc − δl and the modulation of the short-scale variance in the presence of
primordial non-Gaussianity leads to an additional dependence on the long-wavelength
gravitational potential σG,s → σG,s(1 + 2fNLϕG,l), as derived above. The number density
thus allows for a double bias expansion in the matter density and potential

n(ν) = n̄(ν) +
∂n

∂δl

∣

∣

∣

δl=ϕG,l=0
δl +

∂n

∂ϕG,l

∣

∣

∣

δl=ϕG,l=0
ϕG,l + · · · ,

leading to the following expression for the galaxy overdensity:

δg =
n

n̄
− 1 = b10δl + b01ϕG,l + · · · .

Calculate the coefficients b10 and b01 of this expansion in terms of ν = δc/σs and express
the non-Gaussian bias coefficient b01 in terms of the Gaussian bias coefficient b10. Calculate
the linear galaxy power spectrum 〈δgδg〉 and factor out the linear matter power spectrum
〈δG,lδG,l〉. Describe and sketch the behaviour of the power spectrum on large scales in the
presence of primordial non-Gaussianity compared to the Gaussian case, considering both
fNL > 0 and fNL < 0.

(iii) Calculate an explicit expression for the late-time tree-level matter density bis-
pectrum in the presence of local-type primordial non-Gaussianity. Ignore the gravitational
contribution to the bispectrum. Express your result in terms of the matter power spectrum
and discuss its behaviour in the squeezed limit.

(iv) Based on the consistency condition for single-field inflation, explain the typical
size of the bispectrum in the squeezed limit in such models. What does this imply for the
behaviour of the galaxy power spectrum discussed in (ii) above?
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2 The effective 1D dynamics of a set of parallel, infinite mass sheets in 3D space is
described by the following continuity and Euler equations

δ′(x, τ) + θ(x, τ) =−∇ [v(x, τ)δ(x, τ)] ,

v′(x, τ) +Hv(x, τ) +∇φ(x, τ) =− v(x, τ)∇v(x, τ) ,

where δ is the overdensity, θ the velocity divergence (θ = ∇v) and the prime denotes
the derivative with respect to conformal time τ . Assume a matter-only universe in which
H = H0a

−1/2 and ∇2φ(x, τ) = 3
2H

2δ(x, τ). Rewriting the above equations in Fourier
space, one obtains

δ′(k, τ) + θ(k, τ) = −

∫

dq1
2π

∫

dq2α(q1, q2)θ(q1, τ)δ(q2, τ)δ
(D)(k − q1 − q2) ,

θ′(k, τ) +Hθ(k, τ) +
3

2
H2δ(k) = −

∫

dq1
2π

∫

dq2β(q1, q2)θ(q1, τ)θ(q2, τ)δ
(D)(k − q1 − q2) ,

where α(q1, q2) = β(q1, q2) = (q1 + q2)/q1.

(i) Consider the k-space versions of the continuity and Euler equations and the
perturbative expansions of the density and velocity divergence fields

δ(k, τ) =

∞
∑

n=1

an(τ)

n
∏

m=1

{
∫

dqm
2π

δ
(1)
0 (qm)

}

Fn(q1, . . . , qn)(2π)δ
(D)

(

k −

n
∑

m=1

qm

)

,

θ(k, τ) =−H

∞
∑

n=1

an(τ)

n
∏

m=1

{∫

dqm
2π

δ
(1)
0 (qm)

}

Gn(q1, . . . , qn)(2π)δ
(D)

(

k −

n
∑

m=1

qm

)

,

where δ
(1)
0 (k) is the linear, Gaussian random field normalized at a = 1 and F1(q1) = 1.

Derive the gravitational coupling kernels G1, F2 and G2. Show explicitly that the
symmetrized version of the second-order gravitational kernel is given by F2,s(q1, q2) =
(q1 + q2)

2/(2q1q2).

(ii) It can be shown that the functional form of F2,s generalizes to higher order as

Fn,s(q1, . . . , qn) =
(
∑

i qi)
n

n!
∏

i qi
.

Draw the Feynman diagrams for the one-loop bispectra arising from a) the product
of three second-order fields

〈

δ(2)δ(2)δ(2)
〉

and b) the product of two first-order fields

and one fourth-order field
〈

δ(1)δ(1)δ(4)
〉

. Write down the corresponding expressions for
the contributions to the bispectra in terms of Fourier-space integrals over linear den-
sity power spectra. Discuss the behaviour of the diagrams if the loop momentum q
becomes large compared to the external momenta. Which of the two diagrams has
the leading UV-sensitivity for wavenumbers below the non-linear wavenumber kNL and
what would be an appropriate counterterm for the leading divergence at the field level?
For this purpose, consider second spatial derivatives of the perturbative density fields.
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3 (i) After neutrino decoupling, but while still relativistic, neutrinos can be described
by the collisionless Boltzmann equation for massless particles. For scalar perturbations
(in the conformal Newtonian gauge) about a spatially-flat universe, this takes the form

Θ̇ + e ·∇Θ+ e ·∇ψ − φ̇ = 0 .

Here, Θ(η,x, e) is the dimensionless neutrino temperature perturbation at conformal time
η and comoving position x, the unit vector e is the neutrino propagation direction and ψ
and φ are the metric perturbations. Overdots denote differentiation with respect to η. By
expanding Θ in Fourier and angular modes as

Θ(η,x, e) =

∫

d3k

(2π)3/2





∑

l>0

(−i)lΘl(η,k)Pl(k̂ · e)



 eik·x ,

where Pl(µ) are the Legendre polynomials and k̂ = k/|k|, obtain the Boltzmann hierarchy

Θ̇l + k

(

l + 1

2l + 3
Θl+1 −

l

2l − 1
Θl−1

)

= δl0φ̇+ δl1kψ . (∗)

[You may wish to use (2l + 1)µPl(µ) = (l + 1)Pl+1(µ) + lPl−1(µ) and P0(µ) = 1 and

P1(µ) = µ.]

(ii) The orthonormal-frame components of the neutrino anisotropic stress are

Πı̂̂(η,x) = −4ρ̄ν

∫

de

4π
Θ(η,x, e)

(

eı̂ê −
1

3
δı̂̂
)

,

where ρ̄ν is the unperturbed neutrino energy density. Show that

Πı̂̂(η,x) = −
4

3
ρ̄ν

∫

d3k

(2π)3/2
Π(η,k)

(

k̂ik̂j −
1

3
δij
)

eik·x ,

with Π(η,k) = −3Θ2(η,k)/5.
[You may wish to use P2(µ) = (3µ2 − 1)/2 and to note that

∫

de

4π
Pl(k̂ · e)

(

eı̂ê −
1

3
δı̂̂
)

= Al

(

k̂ik̂j −
1

3
δij
)

for some Al.]

(iii) On super-Hubble scales in radiation domination for adiabatic initial conditions,
φ and ψ are constant in time with values φ(0,k) and ψ(0,k), respectively. Assuming that
Θ0 = −ψ(0,k)/2 + O(kη) and Θl = O

(

(kη)l
)

, use the l = 1 and l = 2 moments of (∗) to
show that at leading order

Θ1 =
1

2
ψ(0,k)kη and Θ2 =

1

6
ψ(0,k)(kη)2 .

(iv) The i-j Einstein equation gives

(

∂

∂xi
∂

∂xj
−

1

3
δij∇

2

)

(φ− ψ) = −8πGa2Πij ,
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where a is the scale factor and, numerically, Πij = Πı̂̂ at first order in perturbations.
Assuming neutrinos are the only source of anisotropic stress, show that

φ(0,k) =

(

1 +
2

5
fν

)

ψ(0,k) ,

where fν = ρ̄ν/(ρ̄ν + ρ̄γ) with ρ̄γ the unperturbed photon energy density.

The comoving-gauge curvature perturbation can be expressed as

R = −φ−
H(φ̇+Hψ)

4πGa2(ρ̄+ P̄ )
,

where H = ȧ/a and ρ̄ and P̄ are the unperturbed total energy density and pressure,
respectively. Given that R is constant in time, with value R(k), on super-Hubble scales
for adiabatic initial conditions, express φ(0,k) and ψ(0,k) in terms of R(k).
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4 (i) The optical depth to Thomson scattering between conformal time η and the
present (time η0) is

τ(η) =

∫ η0

η
an̄eσT dη

′ ,

where a is the scale factor, n̄e is the unperturbed electron number density and σT is the
Thomson cross-section. What are the physical interpretations of e−τ and the visibility
function g(η) = −(dτ/dη)e−τ ? Sketch these quantities from times well before recombina-
tion to the present assuming that the universe does not reionize after recombination.

(ii) The dimensionless temperature anisotropy of the CMB is Θ(η,x, e), where
x is comoving position and e is the photon propagation direction. For linear scalar
perturbations about a spatially-flat universe, the Boltzmann equation for Θ in the
conformal Newtonian gauge is

Θ̇ + e ·∇Θ+ e ·∇ψ − φ̇ = −an̄eσTΘ+
3an̄eσT
16π

∫

dm̂Θ(m̂)
[

1 + (e · m̂)2
]

+ an̄eσTe · vb ,

where φ and ψ are the metric perturbations, vb is the baryon peculiar velocity and overdots
denote partial differentiation with respect to η. Stating carefully any assumptions you
make, show that the temperature anisotropy observed at (η0,x0) from direction e satisfies

Θ(η0,x0, e) + ψ(η0,x0) ≈

∫ η0

0
g(η′) (Θ0 + ψ + e · vb) (η

′,x0 − χe) dη′

+

∫ η0

0
e−τ

(

φ̇+ ψ̇
)

(η′,x0 − χe) dη′ , (∗)

where χ = η0 − η′ and Θ0 =
∫

dm̂Θ(m̂)/(4π) is the monopole of Θ.

Simplify (∗) in the limit of instantaneous last scattering at time η∗ and assuming the
universe is matter dominated between η∗ and the present. Give a physical interpretation
of the various terms in your expression for Θ(η0,x0, e).

(iii) In a model where the universe reionized at time ηre, the visibility function can
be approximated by

g(η) ≈
(

1− e−τre
)

δ(η − ηre) + e−τreδ(η − η∗) ,

where τre is the optical depth back to ηre. Assuming a matter-dominated universe for
η > η∗ and ignoring the effects of vb, apply (∗) twice to show that

Θ(η0,x0, e) + ψ(η0,x0) ≈ e−τre (Θ0 + ψ) (η∗,x0 − χ∗e)

+
(

1− e−τre
)

∫

dm̂

4π
(Θ0 + ψ) (η∗,x0 − χree−∆χm̂) ,

where χ∗ = η0 − η∗, χre = η0 − ηre and ∆χ = χ∗ − χre.
[Hint: you should consider how Θ0 + ψ at (ηre,x0 − χree) is related to the fluctuations at

time η∗.]

Hence show that for perturbations with coherence length 1/k,

Θ(η0,x0, e) + ψ(η0,x0) ≈

{

e−τre (Θ0 + ψ) (η∗,x0 − χ∗e) for k∆χ≫ 1 ,

(Θ0 + ψ) (η∗,x0 − χ∗e) for k∆χ≪ 1 .
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Explain why observations of the CMB temperature anisotropies measure the param-
eter combination Ase

−2τre , where As is the amplitude of the primordial power spectrum,
much more precisely than either of As or τre individually.

END OF PAPER
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