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1

In a globally hyperbolic spacetime one can introduce coordinates (t, xi) such that

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) .

The Einstein-Hilbert action is then (neglecting surface terms and setting 16πG = 1)

S =

∫

dt d3x
√
hN((3)R+KijK

ij −K2)

where (3)R is the Ricci scalar of hij , h the determinant of hij and

Kij =
1

2N
(∂thij −DiNj −DjNi) , K = hijKij

where Di is the Levi-Civita connection of hij .

(i) Why are N and N i non-dynamical fields? Determine the momentum πij conjugate
to hij .

(ii) Show that the Hamiltonian of General Relativity is (neglecting surface terms)

H =

∫

d3x
√
h (N H +N iHi)

where H and Hi should be expressed in terms of hij and πij.

(iii) Consider the case in which surfaces of constant t are each asymptotically flat with
one end. Using Hamilton’s equations

∂thij =
δH

δπij
, ∂tπ

ij = − δH

δhij

explain why a well defined variational problem requires adding to H a term of the
following form

EADM = lim
r→+∞

∫

S2
r

dAni (∂jhij − ∂ihjj) ,

where S2
r is a two-sphere of radius r, dA is the area element of S2

r and ni its outward
unit normal.

[You may use

δ(3)R = −(3)Rijδhij +DiDjδhij −DkDk(h
ijδhij) .]

(iv) Why does a closed universe have zero energy?
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(a) Consider a null geodesic congruence that contains the generators of a Killing horizon
N . Show that the expansion θ, shear σ̂ and rotation ω̂ vanish on N . [You may
assume Frobenius’ theorem.]

(b) State and prove the version of the first law of black hole mechanics that relates
the change in area of the event horizon to the energy and angular momentum of
infalling matter. [You may assume Raychaudhuri’s equation.]

(c) Consider the Penrose process for a Kerr black hole. By considering the 4−momentum,
explain why the particle that falls through the horizon has energy E and angular
momentum L obeying E > ΩL, where Ω is the black hole angular velocity. Show
that the same result can be obtained from the first and second laws of black hole
mechanics.
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The following four-dimensional black hole spacetime

ds2 = −V (r)dt2+
dr2

V (r)
+R(r)2(dθ2+sin2 θdϕ2) , A = P cos θ dϕ , φ(r) = −1

2
log

(

1− r−
r

)

,

where

R2(r) = r (r − r−) , r− =
2P 2

r+
and V (r) = 1− r+

r
,

is a solution to the equations of motion derived from the following action

S =
1

16π

∫

d4x
√−g

(

R− 2∇aφ∇aφ− e−2φF abFab

)

,

where F = dA and P is a constant magnetic flux. You may assume that

RabcdRabcd =
3r2r4− − 2r

(

8r2 − 10r−r + 5r2−
)

r+r
2
− + 3

(

4r2 − 6r−r + 3r2−
)2
r2+

4r6 (r − r−)
4 .

(i) Calculate the Komar mass MKomar of this solution defined by

MKomar(r) = − 1

8π

∫

S2
r

⋆dk ,

where ka = (∂/∂t)a. The integral is taken over a constant t , r surface and the
orientation is dt∧dr∧dθ∧dϕ. Explain whyMKomar(r) can depend on r if Rab 6= 0.

(ii) Show that the geodesic equation for null, spacelike and timelike geodesics can be
reduced to an equation of the form

1

2

(

dr

dτ

)2

+ Ṽ (r) = 0 ,

where τ is a suitable affine parameter. Determine Ṽ (r).

(iii) Show that one can define a quantity r⋆ such that u = t − r⋆ and v = t + r⋆ are
constant on radial outgoing and ingoing null geodesics, respectively.

(iv) Define the black hole region of an asymptotically flat spacetime. Prove that if
r− < r+ then the region r− < r < r+ is within the black hole region. Sketch the
Penrose diagram for r− < r+. What does the spacetime describe when r− > r+?

(v) Assuming r− < r+, show that the surface r = r+ is a Killing horizon of k and
determine the surface gravity κ.
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4 Let (M, g) be a globally hyperbolic spacetime and introduce coordinates (t, xi)
such that

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) .

Consider a massive real scalar field Φ with action

S =

∫

M

dt d3x
√−g

(

−1

2
gab∇aΦ∇bΦ− 1

2
m2Φ2

)

and equation of motion
gab∇a∇bΦ−m2Φ = 0 .

(i) Let S be the space of complex solutions of the Klein-Gordon equation endowed with
the inner product

(α, β) = i

∫

Σt

d3x
√
hna (ᾱ∇aβ − β∇aᾱ) ,

where Σt denotes a Cauchy surface of constant t and na its future-directed unit
normal. Show that (α, β) is independent of Σt and that (α, β) = (β, α).

(ii) In Minkowski space, (, ) is positive definite on the subspace Sp of S consisting of
positive frequency solutions. Show that the positive frequency plane waves

ψp =
1

(2π)3/2(2p0)1/2
eip·x with p0 =

√

p2 +m2 ,

form a basis for Sp with respect to inertial coordinates (t,x) and explain in which
sense these have positive frequency.

(iii) Consider again a general globally hyperbolic spacetime. Let {ψi} be an orthonormal
basis for a choice of positive frequency subspace Sp of S:

(ψi, ψj) = δij , (ψi, ψ̄j) = 0 .

A quantum field Φ(x) takes the form

Φ(x) =
∑

i

(

aiψi + a†i ψ̄i

)

,

where the operator coefficients ai and a
†
i satisfy the commutation relations

[ai, aj ] = 0 , [ai, a
†
j ] = δij .

Let S ′
p be a different choice for the positive frequency subspace of S, with orthonor-

mal basis {ψ′
i} given by

ψ′
i =

∑

j

(Aijψj +Bijψ̄j).

(a) Show that

a′i =
∑

j

(Āijaj − B̄ija
†
j) .
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(b) Find the restrictions on the matrices A and B that follow from the require-
ment that the primed operators obey the same commutation relations as
the unprimed operators.

(c) Consider a globally hyperbolic spacetime (M, g) which is Minkowski in the
far past and in the far future. Show that if the state is the vacuum for
inertial observers at early times then it will contain particles for inertial
observers at late times unless B = 0.

END OF PAPER
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