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1 (a) Our assumptions of homogeneity and isotropy force the background metric
describing the universe to take the form,

ds2 = −dt2 + b2(t)dℓ2 ,

where b(t) is an arbitrary function of time and dℓ2 is a constant curvature three metric.
If we assume the curvature is positive, so the space is spherical, then the 3-metric takes
the form,

dℓ2 = dx2 + du2 with constraint |x|2 + u2 = R2 ,

where R is the radius of curvature of the space.

(i) Show this leads to a metric of the form,

ds2 = −dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
,

where you should define a(t) and K.

Our assumptions of homogeneity and isotropy also lead us to assume that the energy
momentum tensor takes the form of a perfect fluid, and with the form of the metric above,
the Einstein equations reduce to the Friedmann and acceleration equations:

(
ȧ

a

)2

=
8πG

3
ρ− K

a2
ä

a
= −4πG

3
(ρ+ 3P ) .

These equations can be combined to obtain the continuity equation,

ρ̇ = −3
ȧ

a
(ρ+ P ) ,

but while the Friedman equations only hold for the total energy density and total pressure,
ρ =

∑
i ρi, P =

∑
i Pi, the continuity equation holds for each fluid component separately.

(ii) Explain why the continuity equation holds for each fluid component separately,
unlike the Friedman equations.

(b) Consider a closed universe where in addition to the usual matter, radiation and dark
energy components we also have a non-interacting cosmic string network, whose energy
density scales as a−2, and a non-interacting domain wall network, whose energy density
scales as a−1.

(i) Find the effective equation of state for strings and also that for walls.

(ii) Define the fractional densities, (Ωr,0,Ωm,0,Ωs,0,Ωw,0,ΩΛ,0), at time t = t0, and
give the Friedmann and acceleration equations in terms of them.

(iii) Find a static solution for a(t) in terms of a single component.

(iv) Demonstrate the stability, or otherwise, of the static solution with respect
to changes in the scale factor. What happens if instead we slightly perturb the energy
density?
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2 (a) We define the field δR(x) by smoothing the matter perturbation, δ(x), via
convolution with a window function W (r,R). The field δR(x) is then a Gaussian random
field with probability distribution function,

P (δR, σR) =
1√
2πσR

exp

(
− δ2R
2σ2

R

)
, where σ2

R =
1

2π2

∫ ∞

0
P (k)W̃ 2(kR)k2dk .

P (k) is the power spectrum of δR and W̃ (kR) is the Fourier transform of the window
function W (r,R).

(i) Assuming P (k) ∝ kneff , where neff is constant and neff < 3. Show that

σR ∝ R
−
(

neff+3

2

)

.

In the Press-Schechter formalism we associated a halo with a location in space, x, by
choosing the largest smoothing scale, R, for which δR(x) exceeds a critical value, δc = 1.69.
The monotonic inverse relationship between the smoothing scale R and the variance
S = σ2

R allowed us to use S to label the smoothing scale. At S = 0 (corresponding
to R → ∞) we must have δS(x) = 0. As we increase S (decrease R), locally δS(x) will
perform a random walk with S playing the role of time. Thus we can equivalently associate
a halo with a point x by finding the smallest S for which the random walk, δS(x), crosses
the barrier δc.

(ii) Calculate the probability that δS(x) > δc for a given S = S∗ at the location
x (i.e. the random walk is above the barrier δc at S∗)? Your answer may be in integral
form.

(iii) Explain the mirror trajectories argument given in lectures and the key as-
sumption required for the smoothing window function. Calculate the probability that
δS(x) > δc for any S 6 S∗ at the location x (i.e. the random walk crossed the barrier δc
before S∗)?

(iv) The mass function is defined dn̄h

dM ≡ − 1
VM

dP
dM , where M is the mass of the halo,

P is the probability of forming a halo with mass greater than M per unit volume, VM is
the volume needed to form a halo with mass M . Use your previous results to show that
the mass function is,

dn̄h

dM
= −

√
2

π

ρ̄

MσR

dσR
dM

ν exp

(
−ν2

2

)
,

where you should define ν. [You may use the following: 2
∫ b
a y2e−y2dy =

∫ b
a e−y2dy −

|ye−y2 |ba ]

(b) In warm dark matter models structure formation is suppressed on small scales leading
to a cut-off in the power spectrum,

P (k) ∝
{
kneff (k < kWDM)

0 (k > kWDM)
.

How does this affect the arguments used in part (a)? Can we still use the mass function
we derived?
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(a) From the first law of thermodynamics, show that the entropy S in a comoving volume
V is given by

S =
ρ+ P

T
V ,

where P is the pressure and ρ is the energy density. Show also that the entropy is conserved
in equilibrium in an expanding universe. You may assume that the chemical potential is
zero in both calculations.

[Hint: You are free to use the result ∂P
∂T = ρ+P

T , the first law of thermodynamics

dU = TdS − PdV + µdN , and the continuity equation ρ̇+ (ρ+ P ) V̇V = 0.]

(b) Starting from your result in (a), show that a quantity g∗sa
3T 3 is conserved in the

early universe, where you should define g∗s. Explain in detail why this implies that the
present-day temperature of the cosmic neutrino background is related to the temperature
of cosmic microwave background photons by

Tν

Tγ
=

(
4

11

)1/3

.

(c) Consider a hot big bang universe consisting of the standard model and, in addition, a
non-relativistic, non-baryonic particle χ. Any interactions of χ with other existing particles
can be neglected for the purposes of this question. At a time td, which is after electron-
positron annihilation but early enough that the universe’s energy is radiation-dominated,
the χ particles decay instantaneously into photons. These photons rapidly thermalize with
the existing photon background. Assuming that energy is conserved in this instantaneous
decay, show that the ratio of photon to neutrino background temperatures is modified to

Tν

Tγ
=

(
4

11

)1/3
(
1 +

(
td
tref

)1/2 ρχ(tref)

ργ(tref)

)−1/4

.

Here ρχ is the energy density of the χ particles, ργ is the energy density in photons, and
tref is a reference time after electron-positron annihilation but before td at which ρχ and
ργ are specified.

[ Hint: You may assume that in radiation domination, the scale factor of the

universe evolves as a ∝ t1/2]

(d) By what factor does the baryon-to-photon ratio η change due to the decay of χ
particles? In light of your result and the fact that the current value of η is already well
determined from the CMB, explain briefly how precise measurements of light element
abundances from big bang nucleosynthesis could be used to find evidence for a decay of χ.
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Single-field slow-roll inflation is described by the scalar field action

S =

∫
d4x

√
−g

[
−1

2
gµν∂µφ∂νφ− V (φ)

]
,

where φ is the inflation field and V (φ) is its potential. Throughout the question, you may
assume that you can ignore metric fluctuations and that the space-time is described by
the line element ds2 = −dt2 + a(t)2dx2, or equivalently ds2 = a(τ)2

[
−dτ2 + dx2

]
when

written in terms of conformal time τ . You may also assume throughout the entire problem

that a(τ) = −(Hτ)−1, that H =
√

V (φ)
3Mpl2 ≈ constant, and that 2H2 ≫ ∂2

φφV (φ).

(a) Show that the equation of motion for the field φ is

φ′′ + 2
a′

a
φ′ −∇2φ+ a2

∂

∂φ
V (φ) = 0,

where ′ indicates a derivative with respect to conformal time.

(b) Consider a perturbation of the field φ(τ,x) = φ̄(τ) + f(τ,x)/a(τ). Neglecting metric
fluctuations, show that each Fourier mode of the perturbation obeys the following equation

f ′′
k + (k2 − a′′

a
)fk = 0.

Why does canonical quantization of fk proceed similarly to the quantization of a simple
harmonic oscillator?

(c) Canonical quantization leads to the following expression for the field operator:

f̂(τ,x) =

∫
d3k

(2π)3/2

[
fk(τ)â

†
k
e−ik.x + f∗

k(τ)âke
ik.x
]
,

where f∗
k
(τ) = e−ikτ

√
2k

(1− i
kτ ), k = |k|, and âk, â

†
k′ are raising and lowering operators.

State the commutation relations obeyed by âk and â†
k′ . Calculate the two point correlation

function of δφ at different positions (using δ̂φ(τ,x) = f̂(τ,x)/a(τ)),

〈0|δ̂φ(τ,x)δ̂φ(τ,x+ r)|0〉.

Deduce the dimensionless power spectrum of δφ, evaluate it when k ≪ aH, and show
that the spectrum is nearly scale invariant in this limit. Discuss briefly the significance of
this result.

[Hint: you may assume that the dimensionless power spectrum ∆2
δφ is related to the

two point correlation function via 〈0|δ̂φ(τ,x)δ̂φ(τ,x+ r)|0〉 =
∫

d3k
(2π)3

2π2

k3 ∆2
δφe

−ik.r]

(d) Assuming that the expression for the field operator in (c) can still be used for
δ̂φ, evaluate the three point correlation function 〈0|δ̂φ(τ,x)δ̂φ(τ,y)δ̂φ(τ, z)|0〉 for three
arbitrary coordinates x,y, z. Under the same assumptions, calculate a general expression
for all odd moments of the field 〈0|(f̂(τ, 0))2n+1|0〉 (where n is an integer).
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