MATHEMATICAL TRIPOS Part III

Tuesday, 12 June, 2018 $\,$ 9:00 am to 11:00 am $\,$

PAPER 307

SUPERSYMMETRY

Attempt all **THREE** questions.

Questions 1 and 2 carry 30 marks each and Question 3 carries 40 marks

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 [30 marks] Consider the generators of the Poincaré algebra $M_{\mu\nu}$, P_{μ} with indices $\mu, \nu = 0, \dots, 3$ and add anti-commuting generators $Q^A_{\alpha}, \bar{Q}^B_{\dot{\alpha}}$ with $\alpha, \dot{\alpha} = 1, 2$ and $A, B = 1, \dots, N$ with N determining the number of supersymmetry generators. Q^A_{α} and $\bar{Q}^B_{\dot{\alpha}}$ transform in the (1/2,0) and (0, 1/2) representations of the Lorentz group respectively. Establish the following commutation and anti-commutation relations.

$$\left[Q^{A}_{\alpha}, M^{\mu\nu}\right] = (\sigma^{\mu\nu})^{\beta}_{\alpha} Q^{A}_{\beta}; \qquad \left\{Q^{A}_{\alpha}, \bar{Q}_{\dot{\beta}B}\right\} = 2 \left(\sigma^{\mu}\right)_{\alpha\dot{\beta}} P_{\mu}\delta^{A}_{B}; \qquad \left\{Q^{A}_{\alpha}, Q^{B}_{\beta}\right\} = \epsilon_{\alpha\beta} Z^{AB}$$

and $[Q_{\alpha}, P^{\mu}] = [\bar{Q}^{\dot{\alpha}}, P^{\mu}] = 0$. Here $Z^{AB} = -Z^{BA}$ are central charges that commute with all generators, $\sigma^{\mu\nu}$ are the SL(2, C) generators and σ^{μ} correspond to the three Pauli matrices (σ^{i}) and the two-dimensional identity matrix $(\sigma^{0} = \mathbf{1})$.

Using this algebra show that the number of fermions equals the number of bosons in any representation of the algebra.

2 [30 marks] Consider the massless representations of extended supersymmetry (with generators $Q^A_{\alpha}, \bar{Q}^B_{\dot{\alpha}}$ with $A, B = 1, \dots, N \ge 1$ and $\alpha, \dot{\alpha} = 1, 2$) in a frame such that the momenta are: $p_{\mu} = (E, 0, 0, E)_{\mu}$. Using the supersymmetry algebra, construct the states within a general multiplet and specify the number of states for each helicity.

Establish the following:

- The total number of states in a representation is $2^{\mathcal{N}}$.
- In every multiplet the difference between maximal and minimal helicity is $\mathcal{N}/2$.

It is usually stated that the maximal number of supersymmetries in renormalisable field theories is $\mathcal{N} = 4$, also that the maximal number of supersymmetries in general is $\mathcal{N} = 8$ and that the only supersymmetric theories with a chiral spectrum correspond to $\mathcal{N} = 0, 1$. Provide a short justification for each of these statements.

UNIVERSITY OF

3 [40 marks] Consider the Wess-Zumino model for a chiral superfield $\Phi(x,\theta) = \varphi(x) + \sqrt{2}\theta\psi(x) + \theta\theta F(x) + \cdots$ with Kähler potential $K = \Phi^{\dagger}\Phi$ and superpotential $W = \frac{m}{2}\Phi^2 + \frac{g}{3}\Phi^3$. Write down the Lagrangian in superspace.

Compute the F dependent part of the Lagrangian [*Hint: Expand the superpotential* W in a Taylor series around $\Phi = \varphi$]. By solving for F determine the scalar potential.

Verify the following:

- The scalar potential is positive semi-definite.
- The mass of the fermion ψ equals the mass of the boson φ .
- The strength of the scalar quartic coupling $|\varphi|^4$ is determined by the strength of the Yukawa coupling $(\varphi\psi\psi)$.

Outline the arguments to establish that the superpotential for this model does not receive perturbative quantum corrections.

END OF PAPER