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1 (i) The phase-space action for an open Nambu-Goto string of tension T in a D-
dimensional Minkowski spacetime with coordinates {Xm;m = 0, 1, . . . ,D − 1} is

I[X,P ; e, u] =

∫

dt

∫ π

0
dσ

{

ẊmPm − 1

2
e
[

P 2 + (TX ′)2
]

− u (Xm)′Pm

}

, (∗)

where e(t, σ) and u(t, σ) are Lagrange multipliers. Where does the Minkowski spacetime
metric appear in this action? Explain briefly why not all of the canonical variables are
physical, and show how the action can be rewritten in terms of “transverse” phase space
variables by imposing the Monge gauge conditions X0 = t and X1 = σ. Use your result
to explain why the tension T is also the rest-energy density of the string.

(ii) Explain briefly why the action (∗) is equivalent to the Polyakov action:

IPoly[X; γ] = −T

2

∫

dt

∫

dσ
√

− det γ γµν∂µX · ∂νX .

Show how the independent Polyakov metric γµν of this action is related, by its equation
of motion, to the worldsheet metric gµν induced by the Minkowski spacetime metric. Use
your result to show that the Polyakov action is equivalent to the Nambu-Goto action
ING[X], which you should express in terms of the induced metric.

(iii) State the conformal gauge condition on the Polyakov metric and use it to
find the Polyakov action in conformal gauge. Allowing for string endpoints, compute the
variation of this action due to an arbitrary variation of Xm. Hence find the conformal
gauge equation of motion for Xm, and show that the action is stationary at solutions of
these equations if, at each endpoint, either X is fixed or X ′ = 0.

(iv) Explain why the Nambu-Goto equations for a string in a three-dimensional
Minkowski spacetime (D = 3) are solved by the following configuration (for constant L):

X0 = t , X1 + iX2 = Leit/L sin(σ/L) .

Given that this configuration describes an open string with one end fixed to the point
~X = ~0 and the other end free, what is its parameter length (range of σ)? What is its
proper length? Explain why the string is rigidly rotating. What is its angular velocity
of rotation; use your answer to determine the velocity of the free end of the string. Is
your answer consistent with the boundary conditions at this end of the string? Find the
total energy E of the string. How much of it is rotational energy? Find the total angular
momentum J and show that J = βE2 for some constant β, which you should determine.
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2 (i) In a D-dimensional Minkowski space, with coordinates {xm;m = 0, 1, . . . D−1},
the Fourier-mode form of the action for an open string with free ends is

I =

∫

dt
{

ẋmpm +
∞
∑

k=1

i

k
α̇k · α−k −

∑

j∈Z

λ−jLj

}

. (∗)

Explain briefly the physical meaning of the canonical variables of this action. Which are
real and which are complex, and how is your answer compatible with reality of the action?
What are the non-zero canonical Poisson bracket relations?

Write down an expression for Lj in terms of the canonical variables [You may use

the fact that αm
0 = pm/

√
πT for a string of tension T ]. Write down (without proof) the

Poisson bracket relations of the phase-space functions Lj; what can you conclude from
them?

(ii) In (a version of) the light-cone gauge, the action (∗) reduces to

I =

∫

dt
{

ẋmpm +
∞
∑

k=1

i

k
α̇k ·α−k − e0(p

2 + 2πTN)
}

.

Write down an expression for N in terms of the ‘transverse’ (D − 2)-vector variables
αk. What are the canonical Poisson bracket relations now? Write down the canonical
commutation relations and define the Fock vacuum state |0〉. Explain how a basis of
Fock space states can be organized according to the eigenvalues N of a “level number”
operator N̂ , defined such N̂ |0〉 = 0. Write down the level-1 states and explain why they
are polarization states of a massless particle. What does this imply for the ground state
of the string?

(iii)Write down the canonical commutation relations corresponding to the canonical
Poisson bracket relations of the action (∗), and define the ‘covariant’ Fock vacuum state
|0〉. Show that there exists an operator ordering such that L̂0 = p2/(2πT ) + N̂cov where
N̂cov|0〉 = 0. Write down (without proof) the commutation relations of the L̂j and explain
why they cannot be deduced directly from the Poisson bracket relations of the Lj. Why
is no state of the string annihilated by L̂j for all non-zero j?

Given that physical states satisfy (for constant a)

(L̂0 − a)|Phys〉 = 0 ; L̂j|Phys〉 = 0 , j > 0 , (†)

show that |0〉 is physical if p2 = (2πT )a. Explain how a basis of states can be organized
by a level number, as for the lightcone gauge, and why all level-1 states take the form
Amαm

−1|0〉 for some (p-dependent) coefficients Am. Which of them satisfy (†)?
Use your results to show that there is a level-1 state of negative norm if a > 1.

Why do the level-1 states correspond to polarization states of a massive vector field when
a < 1? Explain briefly why the spectrum of first excited states agrees with your light-cone
gauge result if a = 1.
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3 (a) The following action describes a relativistic point particle of mass M in a
D-dimensional Minkowski spacetime (m = 0, 1, . . . D − 1):

I[x, p; e] =

∫

dt {ẋmpm − eϕ} , ϕ =
1

2
(p2 +M2) .

Write down the gauge transformation generated by the constraint function ϕ, and deduce
the gauge transformation of e(t) required for invariance of the action. Explain why the
gauge-fixing condition e(t) = s may be imposed, for ‘variable’ constant s, but also why
the condition e(t) = 1 is too strong.

Given that gauge fixing is implemented in the path integral by insertion of the delta-
functional δ[e(t) − s], explain why it should be accompanied by the Faddeev-Popov (FP)
determinant ∆FP = det[∂tδ(t − t′)]. Explain briefly why inclusion of this determinant is
equivalent to an addition to the classical action of the “Faddeev-Popov ghost” action

IFP =

∫

dt { ibċ} ,

where b(t) and c(t) are anticommuting variables.

(b) A mechanical system is described by the action

I[q, p;λ] =

∫

dt
{

q̇IpI − λiϕi(q, p)
}

, (I = 1, . . . , N ; i = 1, . . . , n < N) ,

where the constraint functions satisfy {ϕi, ϕj}PB = fij
kϕk for constants fij

k. Why do
these constants satisfy the identity f[ij

lfk]l
m ≡ 0?

Write down the gauge transformation of the canonical variables generated by ǫiϕi

for infinitesimal parameters ǫi(t). Given that invariance of the action also requires

δλi = ǫ̇i + ǫjλkfjk
i ,

and that the gauge invariance is fixed by imposing λi(t) = λ̄i, where λ̄i are constants, find
the FP ghost action.

(c)Write down the FP ghost action for the closed Nambu-Goto string. What are the
conformal dimensions of the FP worldsheet ghost fields? Explain briefly how consideration
of conformal invariance, now including FP ghosts, restricts the spacetime dimension D to
the critical dimension, D = 26.

The central charge of the Virasoro algebra associated to a generic ‘bc system’ for
which b has conformal dimension J is c = −2(6J2 − 6J + 1). Use this fact to explain
briefly why the worldsheet fermion fields of the ‘spinning’ string (either Ramond or Neveu-
Schwarz) contribute D/2 to the total central charge, and how this leads to the critical
dimension D = 10 after account is taken of additional commuting FP ghost fields arising
from additional gauge invariances of the spinning string.
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4 Write an essay explaining (without detailed computation) why string theory is a
perturbative theory of quantum gravity. You may use units for which 8πT = 1 for string
tension T , and you should include the following topics:

• The presence of a massless spin-2 particle in the closed string spectrum.

• The relation of particles in the string spectrum to vertex operators, and the use of
vertex operators (in the path integral formulation) for the computation of scattering
amplitudes.

• The “dual resonance” property of string amplitudes that leads to the conclusion
that the spin-2 graviton is exchanged in the scattering of string states. You may
wish to illustrate your discussion in terms of the Virasoro amplitude

A(s, t) ∝ Γ(−1− t)Γ(−1− s)Γ(−1− u)

Γ(u+ 2)Γ(s + 2)Γ(t+ 2)
(u = −4− s− t).

• Some features of the string-loop expansion, and the ultra-violet finiteness of the one
string-loop contribution to the vacuum energy.

END OF PAPER
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