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1 (a) Given that the Dirac field ψ(x) satisfies the Dirac equation for a massive
particle, show that ψc(x) ≡ Ĉψ(x)Ĉ−1 = Cψ̄T (x) satisfies the Dirac equation, where
CγµTC−1 = −γµ, C−1 = C†, and γµ† = γ0γµγ0. Find an expression for Ĉψ̄(x)Ĉ−1 in
terms of ψT (x) and C−1.

(b) Recall the expansion of the complex vector field V µ(x),

V µ(x) =
∑

p,λ

[

εµ,λ(p) aλ(p) e−ip·x + εµ,λ∗(p) cλ†(p) eip·x
]

.

Briefly explain the meaning of aλ(p), cλ†(p) and εµ,λ(p). Determine how V µ(x) transforms
under charge-conjugation, ĈV µ(x)Ĉ−1. [You may assume that

Ĉaλ(p)Ĉ−1 = ηC c
λ(p) , Ĉcλ†(p)Ĉ−1 = ηC a

λ†(p) ,

where ηC is a complex phase.]

(c) Derive expressions for the transformation of ψ̄(x)γµψ(x) and ψ̄(x)γµγ5ψ(x)
under charge-conjugation. [Here γ5 = iγ0γ1γ2γ3.]

(d) What restriction is placed on ηC if V µ(x) is a real field? Given that the
interaction between a photon and an electron is invariant under charge-conjugation, deduce
the value of ηC for the photon field Aµ(x).

(e) How does ψ̄(x)γµ(gv−gaγ5)ψ(x)Vµ, where gv and ga are real constants, transform
under CP (a parity transformation followed by a charge-conjugation transformation)? [You
may assume that

P̂ψ(x)P̂−1 = ηP γ
0ψ(xP ) , P̂ ψ̄(x)P̂−1 = η∗P ψ̄(xP )γ

0 , P̂ V µ(x)P̂−1 = P
µ
ν V

ν(xP ) ,

where ηP is a complex phase, xµP = (x0,−x), and P
µ
ν = diag(1,−1,−1,−1).]

(f) What does the result in (e) imply for the interactions of the Z boson in the
Standard Model? Explain whether or not the same argument holds for the interactions of
the W bosons. [You may assume that the Z and W boson fields have the same ηC as the

photon field.]
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2 An SU(N) gauge theory involving a real scalar field φa in the adjoint representation
and a gauge field Ba

µ (a = 1, 2, . . . N2 − 1) has Lagrangian,

L =
1

2
(Dµφ)a(D

µφ)a − V (φaφa)−
1

4
F a
µνF

a,µν ,

where Dµ = ∂µ + ig taBa
µ, (ta)bc = −ifabc and F a

µν = ∂µB
a
ν − ∂νB

a
µ − gfabcBb

µB
c
ν .

The generators ta satisfy [ta, tb] = ifabc tc where fabc are the (antisymmetric) structure
constants.

(a) Consider an SU(2) gauge theory (fabc = ǫabc) with potential

V (φaφa) =
1

2
m2φaφa +

λ

4
(φaφa)

2 , λ > 0, m2 < 0 .

Why, without loss of generality, can we take the vacuum to be (0, 0, v)T and the fluctuations
of φ about the vacuum to be φ(x) = (0, 0, v + η(x))T , where v and η(x) are real?
Discuss how the symmetry is spontaneously broken by the vacuum, identify the unbroken
symmetry and write the Lagrangian in terms of physical fields. Give the masses of the
physical fields (ignoring any quantum corrections) and briefly summarize their interactions.

Explain briefly in what ways this theory, after adding couplings to fermions, could be
a suitable description of weak and electromagnetic interactions. In what crucial respects
does it differ from the electroweak part of the Standard Model?

(b) Now consider an SU(3) gauge theory and suppose that Φ = φat
a acquires a

vacuum expectation value

〈Φ〉 = Φ0 = v





1 0 0
0 1 0
0 0 −2



 .

The gauge bosons acquire masses from the term 1
2g

2(fabcBb
µφc)(f

aefBµeφf ). Show that
this can be written as

−g2 Tr
(

[ta,Φ][tb,Φ]
)

Ba
µB

bµ .

Hence, ignoring any quantum corrections and considering this term with Φ = Φ0,
show that 4 gauge bosons remain massless. Assuming that the other 4 gauge bosons all
acquire the same mass, find this mass in terms of v and g. What is the symmetry which
remains after spontaneous symmetry breaking?

[Hint: Tr(tatb) = 1
2δ

ab and ta = 1
2λ

a where

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0



 λ4 =





0 0 1
0 0 0
1 0 0





λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0



 λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .
]
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3 (a) Consider the neutral pseudoscalar charm mesons D0 and D̄0 with quark flavour
content ūc and c̄u respectively. These can mix in an analogous way to K0 and K̄0

mesons. Draw a Feynman diagram representing one of the leading-order Standard Model
contributions to D0 – D̄0 mixing.

(b) Let H ′ represent the relevant weak Hamiltonian and denote the matrix elements
of H ′ by

(

〈D0|H ′|D0〉 〈D0|H ′|D̄0〉
〈D̄0|H ′|D0〉 〈D̄0|H ′|D̄0〉

)

=

(

R11 R12

R21 R22

)

.

Derive a relationship between the matrix elements assuming invariance under CPT . What
condition would relate the matrix elements R12 and R21 if the weak interaction were
invariant under CP? [Hints: Consider the rest frame and assume that we can choose

conventions such that ĈP̂
∣

∣D0
〉

= −
∣

∣D̄0
〉

and ĈP̂
∣

∣D̄0
〉

= −
∣

∣D0
〉

.]

(c) Draw a tree-level Feynman diagram for each of the processes D̄0 → K+π− and
D̄0 → K−π+ and comment on their expected relative rates.

(d) Neglecting D0 – D̄0 mixing, consider the decay D̄0(p) → K+(k)π−(q) for which
the relevant part of the effective Lagrangian is

Leff = −GF√
2
VcsV

∗
ud

[

c̄γα(1− γ5)s
][

d̄γα(1− γ5)u
]

.

Explain why the following two equalities hold

〈

K+(k)|c̄γµ(1− γ5)s|D̄0(p)
〉

=
〈

K+(k)|c̄γµs|D̄0(p)
〉

= (p+ k)µf+(q
2) + (p− k)µf−(q

2) ,

where q = p− k and f+ and f− are appropriate Lorentz scalar functions.

Hence, using the approximation mπ = 0, show that the tree-level decay rate for this
process can be written as

Γ = AG2
F

∣

∣V ∗
udVcs Fπ f+(0)

∣

∣

2

where Fπ is the decay constant of the π− and A is a constant which you should
write in terms of mD and mK (the D and K masses). [Hints: Fπ is defined by
〈

π−(q)|d̄γµγ5u|0
〉

= −i
√
2Fπ q

µ. The decay rate for A(p) → B(k) + C(q) is,

Γ(A→ BC) =
1

2mA

∫

d3k

(2π)32k0

∫

d3q

(2π)32q0
(2π)4δ(4)(p − k − q) |M|2 ,

where mA is the mass of particle A.]

Part III, Paper 305



5

4 (a) Consider the deep inelastic scattering of an electron off a hadron H of rest mass
M via a virtual photon, e(p)H(PH ) → e(p′)X(PX ). Draw a Feynman diagram for the
process. Treating electrons as massless and working in the rest frame of H, show that,

dσ

d3p′
=

e4

8(2π)2MEE′ q4
Lµν(p, p

′)W µν
H (q, PH )

where E and E′ are the initial and final electron energies, q = p− p′ and

W µν
H (q, PH) =

1

4π

∑

X

(2π)4δ4(q + PH − PX) 〈H(PH)|Jµ|X(PX)〉 〈X(PX)|Jν |H(PH)〉 ,

where the sum over X implicitly includes the appropriate integral over PX and spin
summing/averaging, Jµ is the relevant electromagnetic current, and you should give an
expression for Lµν in terms of p and p′. [Hints: The following expression may be used

without proof: Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ), and the differential cross

section for A(pA) +B(pB) → C(pC) +D(pD) is

dσ =
1

|~vA − ~vB |
1

4p0Ap
0
B

(

d3pC
(2π)32p0C

)(

d3pD
(2π)32p0D

)

(2π)4δ(4)(pA + pB − pC − pD) |M|2 .
]

(b) Explain why we can write

W µν
H =

(

−gµν + qµqν

q2

)

F1(x, q
2) +

(

Pµ
H − PH · q

q2
qµ

)(

P ν
H − PH · q

q2
qν
)

F2(x, q
2)

ν
,

where F1 and F2 are Lorentz scalar functions, ν = PH · q and x = −q2/(2ν).
(c) In certain cases, W µν

H can be approximated by considering incoherent elastic
scattering from “partons” with momentum k = ξPH where ξ is the momentum fraction of
the initial hadron’s momentum,

W µν
H (q, PH) =

∫ 1

0
dξ

∑

f

Q2
f W̃

µν(ξ, q, PH)
[

qf (ξ) + q̄f (ξ)
]

where qf (ξ), q̄f (ξ) is the probability distribution for a quark, antiquark of flavour f and
charge Qf , and

Q2
f W̃

µν(ξ, q, PH) =

1

4πξ

∫

d3k′

(2π)32Ek′
(2π)4δ(4)(q + ξPH − k′)

1

2

∑

spins

〈

qf (ξPH)|Jν |qf (k′)
〉 〈

qf (k
′)|Jµ|qf (ξPH)

〉

.

(i) Neglecting quark and hadron masses, show that the only terms in W̃ µν(k, q)
which contribute are

W̃ µν(ξ, q, PH) =
1

Ek′
δ(Eq + ξEPH

− Ek′)

[

ξPµ
HP

ν
H − PH · q

2
gµν

]

.

[Hint: Show that qµLµν = qνLµν = 0.]

(ii) Finally, show that 2xF1(x, q
2) = F2(x, q

2). [Hint: Show that

δ(Eq + ξEPH
− Ek′)/Ek′ = 2δ(E2

k′ − (ξEPH
+ Eq)

2) = δ(x − ξ)/ν.]
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