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1 Suppose N Type Ia supernovae are observed, all at the same observed redshift z,
and analysis of their brightnesses yields unbiased, independent estimates of their distance
moduli, µ̂i, i = 1 . . . N . The distance modulus is a logarithmic measure of distance d:

µ = 25 + 5 log10[d Mpc−1],

where Mpc is a mega-parsec, a unit of distance. In a smooth, homogeneous, isotropic,
expanding universe, the supernovae must all be at the same true distance modulus µ,
since they all have the same redshift z. However, the estimates µ̂i have different sampling
variances σ2

i around the true µ, because of observational heteroskedastic measurement
error. We wish to combine the N independent estimates from the N individual supernovae
to determine the “best” single estimate of the distance modulus µ to redshift z.

(i) Consider N = 2 supernovae. Consider all estimators that are linear combinations
of the data µ̂1, µ̂2: µ̂ = α1µ̂1 + α2µ̂2. What restriction is required of all unbiased
linear estimators of µ?

(ii) For N = 2, what is the sampling variance Var[µ̂] of the unbiased linear estimators
in part 1? Find the minimum variance unbiased linear estimator by solving for
the appropriate coefficients. Show that they can be expressed as αi = Kσγ

i , and
determine K and γ. What is the variance of the minimum variance unbiased linear
estimator?

(iii) Now generalise to N > 2. Consider all linear estimators of the form µ̂ =
∑N

i=1 αi µ̂i.
What are the coefficients of the minimum variance unbiased linear estimator? Verify
that they satisfy the first- and second-derivative conditions for a local minimum.

(iv) For N > 2, suppose all the uncertainties of the individual estimates are the same,
σi = σ for i = 1, . . . , N . What is the variance of the minimum variance unbiased
linear estimator, and how does it scale with the number of supernovae N?

(v) Now suppose, because of systematic uncertainties, the distance errors for N > 2
supernovae are jointly Gaussian and correlated between supernovae, with known
pairwise covariances Cov[µ̂i, µ̂j] ≡ Cij = σi σj ρij , and correlation coefficients
|ρij | < 1. What is required for the matrix C to be a valid covariance matrix?
Assuming C is a valid covariance matrix, derive the maximum likelihood estimator
µ̂MLE. Compute the bias and variance of the MLE. Compare the variance to the
Cramér-Rao bound. You may leave your answers in terms of elements Λij of the
inverse of the covariance matrix, Λ = C−1.

Part III, Paper 219



3

2 Suppose Type Ia supernovae (SN) are standard candles: the true absolute magni-
tude Ms (proportional to the logarithm of the luminosity) of each individual supernova s
is an independent draw from a narrow Gaussian population distribution

Ms ∼ N(M0, σ
2
int)

with unknown meanM0 and unknown intrinsic “dispersion” or variance σ2
int. The dimming

effect of distance relates the true absolute magnitude Ms to the true apparent magnitude
ms for each SN s:

ms = Ms + µ(zs;H0, w,ΩM ),

where the true distance modulus at the observed redshift zs is

µ(zs;H0, w,ΩM ) = 25 + 5 log10

[

c

H0
d̃(zs;w,ΩM ) Mpc−1

]

,

where Mpc is a mega-parsec (a unit of distance), c is the speed of light, H0 is the Hubble
constant, and (w,ΩM ) are other cosmological parameters, and

d̃(z;w,ΩM ) = (1 + z)

∫ z

0

dz′
√

ΩM(1 + z′)3 + (1− ΩM)(1 + z′)3(1+w)

is a dimensionless deterministic function. However, due to heteroskedastic measurement
error, the measured apparent magnitude (data) is m̂s. Assume that these are unbiased
estimates of ms with zero-mean Gaussian error of known standard deviation σm,s:
m̂s|ms ∼ N(ms, σ

2
m,s). The redshift zs for each SN s is known perfectly. We have

independent measurements of N supernovae.

(i) What is the likelihood function for one supernova s: P (m̂s| zs,M0, σ
2
int,H0, w,ΩM )?

Write down the likelihood function for N supernovae:

L(M0, σ
2
int,H0, w,ΩM ) = P ({m̂s}| {zs},M0, σ

2
int,H0, w,ΩM )

(ii) Suppose the prior is of the form P (M0)P (σ2
int)P (H0)P (w,ΩM ). Write down the

unnormalised posterior density of (M0, σ
2
int,H0, w,ΩM ) given data {m̂s}, {zs}.

(iii) Assume a flat improper prior on the mean absolute magnitude M0 ∼ U(−∞,∞).
Show that the integral

I =

∫ +∞

−∞
L(M0, σ

2
int,H0, w,ΩM )P (M0) dM0

is independent of H0. Suppose we use a prior on the Hubble constant
P (H0) = N(H0| a, b

2), where a = 73.24 km s−1 Mpc−1 and b = 1.74 km s−1 Mpc−1.
What is the marginal posterior of P (H0|{m̂s}, {zs}) conditional on the supernova
data? Justify your answer.

(iv) We ultimately want to obtain the marginal posterior density of the dark energy
equation-of-state parameter w: P (w|{m̂s}, {zs}). Assume we have constraints from
external data (e.g. baryonic acoustic oscillations or cosmic microwave background)
in the form of a proper prior density P (w,ΩM ). Specify an appropriate non-
informative prior on σ2

int. Describe how you would implement an MCMC algorithm
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to generate samples from the joint parameter space. What quantities are included
in the parameter vector θ in your chain, and how would you diagnose convergence
and determine an appropriate thinning factor? Describe how you would use the
resulting posterior samples to compute the marginal posterior mean and standard
deviation of P (w|{m̂s}, {zs}).

(v) Show that the MCMC algorithm you constructed satisfies detailed balance.
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(i) Consider the following plots (P1, P2, P3), which show random functions of time
drawn from Gaussian process priors with different kernels. Match each of the
following kernels with the plot it most likely generated:

(a) k(t, t′) = A2 exp(−|t− t′|/τ);

(b) k(t, t′) = A2 exp(−|t− t′|2/τ2);

(c) k(t, t′) = A2 exp
[

− 2
l2
sin2

(

2π |t−t′|
T

)]

.

0 200 400 600 800 1000
Time (days)

-1

-0.5

0

0.5

1

1.5

2

2.5

B
rig

ht
ne

ss
 (

ap
pa

re
nt

 m
ag

)

Figure 1: Plot P1: A random function of time drawn from a GP.
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Figure 2: Plot P2: A random function of time drawn from a GP.
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Figure 3: Plot P3: A random function of time drawn from a GP.
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(ii) Suppose we have irregularly timed observations of the brightness of a periodic
variable star. The true brightness light curve f(t) of the star repeats every P
days. The mean brightness has been subtracted, so f(t) may be assumed to have
a long-term average of zero. The measurement of the latent brightness f(ti) at
observation time ti is yi with zero-mean heteroskedastic Gaussian error with known
standard deviation σi, for i = 1, . . . , N data points. Assume a zero-mean Gaussian
process prior and an appropriate covariance function, with hyperparameters H,
for the underlying light curve. Derive a marginal likelihood function P (y| t,H),
and specify the hyperparameters H. How would you estimate the period P of the
variable star and its 1σ uncertainty?

(iii) Having now determined estimates Ĥ of the hyperparameters H, we would like to
make predictions of the true, latent light curve on a regular grid of future times t∗j ,

j = 1 . . .M , such that t∗1 > tN . Fixing, H = Ĥ , derive an expression for the joint
posterior predictive probability of the future light curve f(t∗), which has elements
f(t∗j): P (f(t∗)| t∗,y, t, Ĥ).
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4 Consider the following hierarchical Bayesian generative model for supernova colours.
The latent intrinsic colour of a supernova s is Cs and is drawn from a Gaussian distribution
with mean colour µC and variance σ2

int: Cs ∼ N(µC , σ
2
int). The latent reddening due

to interstellar dust in the supernova’s galaxy is Es, and is drawn from an exponential
distribution with mean τ : Es ∼ Exponen(τ), i.e.,

P (Es| τ) = τ−1 exp(−Es/τ)×H(Es),

where H(x) is the Heaviside step function:

H(x) =

{

1, x > 0,

0, x < 0.

The measured, observed colour Ôs results from the sum of the intrinsic colour, reddening,
and Gaussian measurement error with mean zero and known variance σ2

O,s: Ôs|Es, Cs ∼

N(Cs + Es, σ
2
O,s). There are s = 1, . . . , N independent supernovae in our sample. You

may assume improper, noninformative and independent priors on ln τ , µC and lnσ2
int:

P (ln τ) ∝ 1,

P (µC) ∝ 1,

P (lnσ2
int) ∝ 1.

(i) Write down the joint probability distribution of the observed data {Ôs}, latent
variables {Cs, Es} , and hyperparameters µC , σ

2
int, τ for the sample of N supernovae.

(ii) Draw a probabilistic graphical model or directed acyclic graph representing this
joint distribution.

(iii) Construct a Gibbs sampler that generates an MCMC to sample the joint posterior
probability density of the unknown latent variables and hyperparameters given the
observed colours, P ({Cs, Es}, µC , σ

2
int, τ | {Ôs}), by deriving the 2N + 3 conditional

posterior densities that one can directly sample from. You may assume that you
have access to algorithms that allow you to directly sample random variates from
the following probability densities:

(a) Gaussian N(x|µ, σ2).

(b) truncated Gaussian TN(x|µ, σ2) ∝ H(x)×N(x|µ, σ2).

(c) Inverse gamma: Inv-Gamma(x| a, b) ∝ x−(a+1) exp(−b/x), x, a, b > 0.

Briefly describe how you would implement the sampler, and analyse and assess the
convergence of the MCMC.

END OF PAPER
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