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1 Researchers wanted to understand the effect of different diets on rat weight growth
over time. They assigned each of 16 rats to one of three diets (coded 1, 2 and 3) and
measured the body weight of each rat (in grams) on day 1 and every seven days thereafter
until day 71. Their study data is recorded in the BodyWeight dataset and analysed with
the following R code.

> BodyWeight

## weight Time Rat Diet

## 1 240 1 1 1

## 2 250 8 1 1

## 3 255 15 1 1

## ...

## 174 550 50 16 3

## 175 553 57 16 3

## 176 569 64 16 3

> library(lme4)

> bw.lm1 <- lm(weight ~ Time + Diet, data = BodyWeight)

> bw.lm2 <- lm(weight ~ Time + Diet + Rat, data = BodyWeight)

> bw.lme1 <- lmer(weight ~ Time + Diet + (1 | Rat), data = BodyWeight, REML = TRUE)

> summary(bw.lme1)

## Linear mixed model fit by REML [‘lmerMod’]

## Formula: weight ~ Time + Diet + (1 | Rat)

## Data: BodyWeight

##

## REML criterion at convergence: 1304.3

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.5236 -0.5557 -0.0467 0.5667 3.0932

##

## Random effects:

## Groups Name Variance Std.Dev.

## Rat (Intercept) 1337.88 36.577

## Residual 66.85 8.176

## Number of obs: 176, groups: Rat, 16

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 244.06890 13.00477 18.768

## Time 0.58568 0.03168 18.486

## Diet2 220.98864 22.44958 9.844

## Diet3 262.07955 22.44958 11.674

##

## Correlation of Fixed Effects:

## (Intr) Time Diet2

## Time -0.082

## Diet2 -0.575 0.000
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## Diet3 -0.575 0.000 0.333

(a) Which modelling assumption is violated for the model bw.lm1 in this dataset?
Why is model bw.lm2 non-identifiable?

(b) Write down algebraically the model fitted in bw.lme1 and estimated values of
all parameters in the model. How do you interpret the fixed effect coefficient of Time in
the R output?

(c) Let X be the design matrix of model bw.lm1. Let A be a matrix whose columns
form an orthonormal basis of the orthogonal complement of the column space of X.
Describe, with reference to matrix A, the objective function maximised by the random
effect estimates for Rat and Residual in the R output.

(d) To test whether the random effect in model bw.lme1 is necessary, they carried
out a likelihood ratio test using the following R commands.

> test_stat <- 2*(logLik(bw.lme1) - logLik(bw.lm1))

> pval <- 1 - pchisq(test_stat, df = 1)

Why is the test carried out above is not valid? Explain in detail how a valid test can be car-
ried out.

2 Suppose we have observations (x1, y1), . . . , (xn, yn), where x1, . . . , xn ∈ R
p are

covariates and y1, . . . , yn ∈ {−1, 1} are associated class labels.

(a) Define positive definite kernels on R
p. Show that the linear kernel k : (x, x′) 7→

x⊤x′ is a positive definite kernel on R
p.

(b) Write down the optimisation problem solved by the soft-margin support vector
machine with a linear kernel. What is the set of support vectors in this support vector
machine? [You may assume that the optimisation problem has a unique optimiser.]

(c) Describe how leave-one-out cross-validation (with respect to the binary misclas-
sification loss) can be implemented to choose the soft-margin tuning parameter.

(d) Show that the decision boundary of the support vector machine is unchanged if
we remove any non-support vector from the training data. Hence or otherwise, show that
the leave-one-out cross-validation error errCV satisfies

errCV 6
s

n
,

where s is the number of support vectors.
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3 A research team in financial company wanted to understand risk factors for loan
defaults. They looked at n = 3000 loans issued in 2005 and collected information on client
age (in years), yearly income (in £1000s), loan amount (in £1000s) and whether or not a
default had occurred (coded 1 for yes and 0 for no) within 10 years of issuance. They first
fit the following model in R.

> head(loan)

## default income age amount

## 1 0 59.2 49.5 31.5

## 2 0 81.8 47.3 5.9

## 3 1 57.6 45.9 33.7

## 4 0 25.0 53.1 13.3

## 5 1 76.4 23.3 29.5

## 6 0 63.2 39.7 20.3

> model1 <- glm(default~income+age+amount, family="binomial", data=loan)

> summary(model1)

## Call:

## glm(formula = default ~ income + age + amount, family = "binomial",

## data = loan)

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.7126 -0.5868 -0.5440 -0.4876 2.1978

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.322701 0.204388 -6.472 9.7e-11 ***

## income -0.005916 0.002292 -2.581 0.009858 **

## age -0.008580 0.003833 -2.239 0.025179 *

## amount 0.012981 0.003787 3.428 0.000609 ***

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 2480.1 on 2999 degrees of freedom

## Residual deviance: 2462.7 on 2996 degrees of freedom

##

## Number of Fisher Scoring iterations: 4

(a) Write down algebraically the model fitted in model1 and estimated coefficients.
Compute an approximate 95% confidence interval of the coefficient for age.

(b) Suppose that the company wanted to use model1 as a classifier and classify a
loan as risky if the predicted probability of default is at least p ∈ (0, 1). Write down the
decision boundary for this classifier.

The research team then fitted a neural network model using the following commands.

> library(keras)
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> x <- model.matrix(~income+age+amount-1, data=loan)

> y <- model.matrix(~as.factor(default)-1, data=loan)

> layer1 <- layer_dense(units = 2, activation = ‘sigmoid’, input_shape = dim(x)[2])

> layer2 <- layer_dense(units = 2, activation = ‘softmax’)

> model2 <- keras_model_sequential(list(layer1, layer2))

> compile(model2, optimizer=‘sgd’, loss=‘categorical_crossentropy’, metrics=‘acc’)

> fit(model2, x, y, batch_size=1, epochs=5)

(c) Draw the architecture of the neural network in model2 and write down the model
algebraically.

(d) Describe how stochastic gradient ascent can be carried out to maximise the log-
likelihood, specifying explicitly how relevant gradients with respect to model coefficients
are computed. [You may assume that model coefficients have been appropriately ini-
tialised.]
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4 In a clinical trial, 107 patients suffering from epilepsy were randomised to receive
either the anti-epileptic drug Progabide or a placebo. A researcher was interested to
understand how the post-treatment seizure counts over a one-week period (seizure)
depend on the age of patients (age), baseline seizure count of the patients prior to the
study (baseline) and treatment option (treatment). She fitted the following model in R.

> head(epilepsy)

## age baseline treatment seizure

## 1 33 16 Progabide 8

## 2 16 56 Placebo 14

## 3 27 22 Placebo 6

## 4 30 55 Placebo 25

## 5 35 32 Progabide 5

## 6 26 87 Placebo 9

> epilepsy.glm <- glm(seizure ~ age + treatment * baseline, family = "poisson",

data = epilepsy)

> summary(model1)

## Call:

## glm(formula = seizure ~ age + treatment * baseline, family = "poisson",

## data = epilepsy)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.2697 -1.3423 -0.2103 0.6166 4.4431

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 1.1215275 0.1742522 6.436 1.22e-10 ***

## age 0.0090311 0.0051408 1.757 0.078962 .

## treatmentProgabide -0.3592068 0.1117255 -3.215 0.001304 **

## baseline 0.0186824 0.0011610 16.092 < 2e-16 ***

## treatmentProgabide:baseline 0.0008682 0.0013767 0.631 0.528303

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 1014.69 on 106 degrees of freedom

## Residual deviance: 319.86 on 102 degrees of freedom

## AIC: 681.15

##

## Number of Fisher Scoring iterations: 5

(a) Let Yi be the post-treatment seizure count for patient i. Write down the algebraic
form of the model for Y1, . . . , Yn that has been fitted in epilepsy.glm. Write down
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the log-likelihood function for this model and the corresponding maximum likelihood
estimates. How do you interpret the estimated coefficient for the interaction term
treatmentProgabide:baseline?

(b) Write down the algebraic form of the null model associated with ‘null deviance’
in the R output. Show that the null deviance is equal to

2
n∑

i=1

Yi log(Yi/Ȳ ),

where Ȳ = n−1
∑n

i=1
Yi.

(c) Is the model epilepsy.glm a good fit? Support your conclusion with a relevant
goodness-of-fit test, stating without proof any relevant theory used. The researcher decided
to improve the model fit by using a quasi-Poisson model to account for overdispersion. How
is the dispersion parameter estimated in a quasi-Poisson model? If the estimated dispersion
parameter is 3.24, is the treatment effect of Progabide statistically significant at 5% level
under the quasi-Poisson model?

5 A meteorologist wanted to model mean daily temperature (in degrees Celsius)
at a location in Cambridge for n = 31 days in December. Let Xt denote the mean
temperature measurement on the tth day. From prior experience, she wanted to fit a
stationary Gaussian AR(1) model with a non-zero mean.

(a) Show that the Yule–Walker estimator of the autoregressive coefficient in this
model is equal to the lag 1 sample autocorrelation.

(b) Write down the likelihood function of relevant parameters involved in this model.

While handling data, the meteorologist accidentally misplaced the data file for 2 Dec
and she now only had data for the remaining 30 days.

(c) What is the distribution of X2 conditional on X1,X3,X4, . . . ,Xn?

(d) Describe how she could use an expectation-maximisation algorithm to impute
the missing data and find (local) maximum likelihood estimators of the AR(1) model
parameters. Specify in your description how the expression of the expectation step can be
computed.
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6 A statistician was interested in performing a bivariate linear regression

Yi = β0 + β1xi,1 + β2xi,2 + ǫi, ǫi
iid∼ N(0, σ2), i = 1, . . . , n.

The response variable and covariates were collected in the dataset dat with each row
representing an observation. Columns x1 and x2 in the dataset were both standardised to
have mean 0 and Euclidean norm

√
n. A snippet of her analysis in R is shown below.

> head(dat)

## y x1 x2

## 1 16.08 -0.46 -0.41

## 2 7.01 -1.59 -1.49

## 3 10.54 0.00 -0.16

## 4 7.96 0.31 0.18

## 5 13.52 1.72 1.65

## 6 12.84 -0.34 -0.22

> cor(dat)

## y x1 x2

## y 1.0000000 0.2517297 0.2412650

## x1 0.2517297 1.0000000 0.9813846

## x2 0.2412650 0.9813846 1.0000000

> model1 <- lm(y~x1, data=dat)

> model2 <- lm(y~x2, data=dat)

> model3 <- lm(y~x1+x2, data=dat)

> plot(model3, which=c(1,2))

> summary(model1)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.2219 0.4476 25.070 <2e-16 ***

## x1 1.1586 0.4500 2.575 0.0115 *

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(model2)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.2224 0.4488 25.003 <2e-16 ***

## x2 1.1101 0.4511 2.461 0.0156 *

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(model3)

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.2217 0.4497 24.953 <2e-16 ***
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## x1 1.8663 2.3538 0.800 0.43

## x2 -0.7209 2.3532 -0.306 0.76

## ---

## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(model2, model3)

## output omitted

The output of the diagnostic plots in the above code are as follows.

(a) How are the x- and y-coordinate values of points in the two diagnostic plots
computed? Do you spot any violation of modelling assumptions in model3 from these
plots?

(b) Why are covariates x1 and x2 insignificant in the bivariate model model3, despite
being significant individually in univariate regressions model1 and model2?

(c) Explain the test that is carried out by the anova(model2, model3) command,
specifying the null and alternative hypotheses, the expression for the test statistic and
how the p-value is computed. Write down numerical values for both the test statistic and
p-value of this test.

The statistician then fitted a ridge regression using the following R commands.

library(glmnet)

X <- model.matrix(y~x1+x2, data=dat)

model4 <- glmnet(X, dat$y, alpha=0, lambda=exp(7:(-7)))

plot(model4, xvar=‘lambda’)
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(d) Write down the optimisation problem solved by model4 in a penalised form in
terms of a regularisation parameter λ. The solution path of the ridge regression is shown
in the figure above. What are the asymptotes of the two curves as the horizontal axis of
the figure approaches +∞ and −∞?

(e) Let β̂r

1,λ and β̂r

2,λ be the ridge regression estimator of β1 and β2. Write down

expressions for var(β̂r

1,λ) and var(β̂r

2,λ) (you do not need to carry out the computation).
Are they useful in constructing confidence intervals for β1 and β2? Why or why not?

(f) Suggest a suitable criterion for selecting among linear models model1, model2
and model3. What is a suitable criterion for selecting the tuning parameter λ in the ridge
regression model?

END OF PAPER
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