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1 Let (Xi)i>1 be a µ-reversible Markov chain on X .

(a) Define geometric ergodicity for (Xi)i>1.

(b) Let X1 = x with probability 1, and define mn = ⌊n1/3⌋. Prove that if (Xi)i>1

is geometrically ergodic and Y ∼ µ, then for any measurable function f : X → R, with
supx∈X |f(x)| < ∞,

lim sup
n→∞

1

n−mn
Var

(

n
∑

i=mn+1

f(Xi)

)

6 γVar(f(Y ))

for some γ < ∞ which does not depend on f .

(c) Using the result of part (b) prove that under the same assumptions,

lim sup
n→∞

1

n
Var

(

n
∑

i=1

f(Xi)

)

6 γVar(f(Y ))

for some γ < ∞ which does not depend on f .

[You can cite any result from the lecture notes. ]

2 Let C be a compact, convex subset of R2.

(a) Define the Hit-and-Run algorithm which produces approximate samples from
the uniform distribution on C.

(b) Prove that the Markov kernel K(x, dy) in the Hit-and-Run algorithm admits
a density, p(x, y), with respect to the Lebesgue measure and that this density satisfies
infx,y∈C p(x, y) > 0.

(c) State the drift condition for geometric ergodicity.

(d) Using part (b), prove that the algorithm is geometrically ergodic.
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3 Let Yi be the number of trains departing more than 10 minutes late from London
King’s Cross, out of a total of ni trains, on the ith day of the year. For each day, we have
a vector xi ∈ R

p of independent variables. For example, xi may contain an indicator for
the event of snow on day i, among other variables. The relationship between xi and Yi is
modelled as follows,

Yi | θi ∼ Binomial

(

ni,
eθi

1 + eθi

)

θi ∼ N(x⊤i β + σ2Zi, σ
2
0) for i = 1, . . . , 365, independent,

Zi =
√
ρZi−1 + ξi for i = 2, . . . , 365,

Z1 ∼ N(0, 1), ξi ∼ N(0, 1 − ρ) for i = 2, . . . , 365, independent.

The parameters in the model are β ∈ R
p, σ2 > 0, σ2

0 > 0, ρ ∈ (0, 1). We put an improper
prior distribution p(β, σ2, σ2, ρ) = 1/(σ2σ2

0) on the parameters.

(a) How would you interpret a coefficient βj for j ∈ {1, . . . , p}? Why might it be
desirable to make θi random, as opposed to making it equal to its expected value x⊤i β?
Discuss the role of the parameters σ2 + σ2

0 and ρ in this model.

(b) Consider a Gibbs sampler targeting the posterior distribution of the variables
β, σ2, σ2

0 , ρ, θ, Z conditional on x and Y . Propose algorithms to draw exact samples from
the following conditional distributions and justify your choice.

i) p(Z | β, σ2, σ2
0 , ρ, θ, x, Y ),

ii) p(θ | β, σ2, σ2
0 , ρ, Z, x, Y ).

4 A factor analysis model for observations (Y1, . . . , Yn) with Yi ∈ R
p for i = 1, . . . , n,

assumes that each vector is independent and

Yi = ΛZi + ξi

where Zi ∼ N(0, Ik), ξi ∼ N(0, σ2Ip) are independent, and the matrix Λ ∈ R
p×k is a

parameter. You may assume σ2 is fixed.

(a) What is the marginal distribution of Yi?

(b) In the case k = 1, derive an explicit formula for the parameter update in the
EM algorithm for finding the maximum likelihood estimator of Λ.

(c) Consider now a general model with parameters θ, latent variables Z, and observ-
ables Y . Prove that an iteration of the EM algorithm for finding the maximum likelihood
estimator of θ cannot decrease the likelihood function.
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5 Let (Yi)i>0 be a Markov chain with state space R
d, and π a probability density

function on the same space. A step of the Markov chain may be simulated as follows.
Given Yi, propose a state Y ′ = AYi + Z, where A ∈ R

d×d is a random orthogonal matrix
with distribution ν, Z ∼ N(0, I), and Yi, A, and Z are mutually independent. Then, with
probability min {1, π(Y ′)/π(Yi)} set Yi+1 = Y ′, and otherwise set Yi+1 = Yi.

Suppose that the distribution ν is invariant to inversion, i.e. if A ∼ ν, then AT ∼ ν.
Show that (Yi)i>0 has stationary distribution π.

6 You are given a collection of n bank notes, some of which are counterfeits. Let
Yi be 1 if bank note i is genuine, and 0 if it is a counterfeit. Let xi ∈ R

p be a vector of
features of bank note i, such as the weight and size. We apply a Probit regression model,
which assumes

Yi ∼ Bernoulli(µi), µi = Φ(x⊤i β),

independent for i = 1, . . . , n, where Φ is the standard normal cumulative distribution
function. We put a prior N(0, σ2I) on the parameter β. For a bank note which is not
in the training set, with features xtest, you are asked to estimate the posterior mean of
Φ(x⊤testβ), the probability that it is genuine.

(a) Given i.i.d. samples β(1), β(2), . . . , β(n) from the posterior distribution p(β | Y ),
write down the Monte Carlo estimator for the desired posterior mean.

(b) Derive the gradient of the log-posterior g(β) = ∇β log p(β | Y ), and explain why
this can be used as a control variate.

(c) Suppose that the covariance matrix of the vector (Φ(x⊤testβ
(1)), g(β(1))⊤) is

known. Derive the control variates estimator with minimal variance, and prove that it has
smaller variance than the Monte Carlo estimator of part (a).
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