MATHEMATICAL TRIPOS

Part III

Friday, 8 June, 2018 9:00 am to 12:00 pm

PAPER 216

BAYESIAN MODELLING AND COMPUTATION

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1 Let $(X_i)_{i \ge 1}$ be a μ -reversible Markov chain on \mathcal{X} .

(a) Define geometric ergodicity for $(X_i)_{i \ge 1}$.

(b) Let $X_1 = x$ with probability 1, and define $m_n = \lfloor n^{1/3} \rfloor$. Prove that if $(X_i)_{i \ge 1}$ is geometrically ergodic and $Y \sim \mu$, then for any measurable function $f : \mathcal{X} \to \mathbb{R}$, with $\sup_{x \in \mathcal{X}} |f(x)| < \infty$,

$$\limsup_{n \to \infty} \frac{1}{n - m_n} \operatorname{Var}\left(\sum_{i=m_n+1}^n f(X_i)\right) \leqslant \gamma \operatorname{Var}(f(Y))$$

for some $\gamma < \infty$ which does not depend on f.

(c) Using the result of part (b) prove that under the same assumptions,

$$\limsup_{n \to \infty} \frac{1}{n} \operatorname{Var}\left(\sum_{i=1}^{n} f(X_i)\right) \leqslant \gamma \operatorname{Var}(f(Y))$$

for some $\gamma < \infty$ which does not depend on f.

[You can cite any result from the lecture notes.]

2 Let \mathcal{C} be a compact, convex subset of \mathbb{R}^2 .

(a) Define the Hit-and-Run algorithm which produces approximate samples from the uniform distribution on $\mathcal{C}.$

(b) Prove that the Markov kernel K(x, dy) in the Hit-and-Run algorithm admits a density, p(x, y), with respect to the Lebesgue measure and that this density satisfies $\inf_{x,y\in\mathcal{C}} p(x, y) > 0.$

(c) State the drift condition for geometric ergodicity.

(d) Using part (b), prove that the algorithm is geometrically ergodic.

CAMBRIDGE

3 Let Y_i be the number of trains departing more than 10 minutes late from London King's Cross, out of a total of n_i trains, on the *i*th day of the year. For each day, we have a vector $x_i \in \mathbb{R}^p$ of independent variables. For example, x_i may contain an indicator for the event of snow on day *i*, among other variables. The relationship between x_i and Y_i is modelled as follows,

$$\begin{split} Y_i \mid \theta_i \sim \text{Binomial} \left(n_i, \frac{e^{\theta_i}}{1 + e^{\theta_i}} \right) \\ \theta_i \sim N(x_i^\top \beta + \sigma^2 Z_i, \sigma_0^2) & \text{for } i = 1, \dots, 365, \text{ independent}, \\ Z_i = \sqrt{\rho} Z_{i-1} + \xi_i & \text{for } i = 2, \dots, 365, \\ Z_1 \sim N(0, 1), \quad \xi_i \sim N(0, 1 - \rho) & \text{for } i = 2, \dots, 365, \text{ independent}. \end{split}$$

The parameters in the model are $\beta \in \mathbb{R}^p$, $\sigma^2 > 0$, $\sigma_0^2 > 0$, $\rho \in (0, 1)$. We put an improper prior distribution $p(\beta, \sigma^2, \sigma^2, \rho) = 1/(\sigma^2 \sigma_0^2)$ on the parameters.

(a) How would you interpret a coefficient β_j for $j \in \{1, \ldots, p\}$? Why might it be desirable to make θ_i random, as opposed to making it equal to its expected value $x_i^{\top}\beta$? Discuss the role of the parameters $\sigma^2 + \sigma_0^2$ and ρ in this model.

(b) Consider a Gibbs sampler targeting the posterior distribution of the variables $\beta, \sigma^2, \sigma_0^2, \rho, \theta, Z$ conditional on x and Y. Propose algorithms to draw <u>exact</u> samples from the following conditional distributions and justify your choice.

i) $p(Z \mid \beta, \sigma^2, \sigma_0^2, \rho, \theta, x, Y),$ ii) $p(\theta \mid \beta, \sigma^2, \sigma_0^2, \rho, Z, x, Y).$

4 A factor analysis model for observations (Y_1, \ldots, Y_n) with $Y_i \in \mathbb{R}^p$ for $i = 1, \ldots, n$, assumes that each vector is independent and

$$Y_i = \Lambda Z_i + \xi_i$$

where $Z_i \sim N(0, I_k)$, $\xi_i \sim N(0, \sigma^2 I_p)$ are independent, and the matrix $\Lambda \in \mathbb{R}^{p \times k}$ is a parameter. You may assume σ^2 is fixed.

(a) What is the marginal distribution of Y_i ?

(b) In the case k = 1, derive an explicit formula for the parameter update in the EM algorithm for finding the maximum likelihood estimator of Λ .

(c) Consider now a general model with parameters θ , latent variables Z, and observables Y. Prove that an iteration of the EM algorithm for finding the maximum likelihood estimator of θ cannot decrease the likelihood function.

UNIVERSITY OF

5 Let $(Y_i)_{i\geq 0}$ be a Markov chain with state space \mathbb{R}^d , and π a probability density function on the same space. A step of the Markov chain may be simulated as follows. Given Y_i , propose a state $Y' = AY_i + Z$, where $A \in \mathbb{R}^{d \times d}$ is a random orthogonal matrix with distribution ν , $Z \sim N(0, I)$, and Y_i , A, and Z are mutually independent. Then, with probability min $\{1, \pi(Y')/\pi(Y_i)\}$ set $Y_{i+1} = Y'$, and otherwise set $Y_{i+1} = Y_i$.

Suppose that the distribution ν is invariant to inversion, i.e. if $A \sim \nu$, then $A^T \sim \nu$. Show that $(Y_i)_{i \ge 0}$ has stationary distribution π .

6 You are given a collection of n bank notes, some of which are counterfeits. Let Y_i be 1 if bank note i is genuine, and 0 if it is a counterfeit. Let $x_i \in \mathbb{R}^p$ be a vector of features of bank note i, such as the weight and size. We apply a Probit regression model, which assumes

$$Y_i \sim \text{Bernoulli}(\mu_i), \quad \mu_i = \Phi(x_i^\top \beta),$$

independent for i = 1, ..., n, where Φ is the standard normal cumulative distribution function. We put a prior $N(0, \sigma^2 I)$ on the parameter β . For a bank note which is not in the training set, with features x_{test} , you are asked to estimate the posterior mean of $\Phi(x_{\text{test}}^{\top}\beta)$, the probability that it is genuine.

(a) Given i.i.d. samples $\beta^{(1)}, \beta^{(2)}, \dots, \beta^{(n)}$ from the posterior distribution $p(\beta \mid Y)$, write down the Monte Carlo estimator for the desired posterior mean.

(b) Derive the gradient of the log-posterior $g(\beta) = \nabla_{\beta} \log p(\beta \mid Y)$, and explain why this can be used as a control variate.

(c) Suppose that the covariance matrix of the vector $(\Phi(x_{test}^{\top}\beta^{(1)}), g(\beta^{(1)})^{\top})$ is known. Derive the control variates estimator with minimal variance, and prove that it has smaller variance than the Monte Carlo estimator of part (a).

END OF PAPER