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(a) State the FKG inequality for bond percolation on Z
d. Let A1, . . . , An be

increasing events for bond percolation in Z
d having the same probability. Prove that

Pp(A1) > 1− (1− Pp(A1 ∪ . . . ∪An))
1/n.

(b) Let d > 2 and consider bond percolation on Z
d with p > pc. For each m denote

B(m) = [−m,m]d ∩ Z
d.

(i) Prove that uniformly in n ∈ N we have

Pp(B(m)←→ ∂B(n+m))→ 1 as m→∞.

(ii) Let FL(n) = {x ∈ B(n) : x1 = −n} and FR(n) = {x ∈ B(n) : x1 = n} be the
“left” and “right” faces respectively of B(n). Show that for i ∈ {L,R} uniformly in n ∈ N

we have
Pp(B(m)←→ Fi(n+m))→ 1 as m→∞.

(iii) Let LR(n) denote the event that there exists a left to right crossing of B(n)
which lies in B(n), i.e. a path of open edges of B(n) connecting FL(n) to FR(n). Prove
that

Pp(LR(n))→ 1 as n→∞.
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Consider bond percolation on Z
2 with parameter p ∈ (1/2, 1) and let B(m) =

[−m,m]2 ∩ Z
2. Let C denote the cluster of the origin and let θ(p) = Pp(|C| =∞).

(a) Let R(m) denote the number of vertices in B(m) that belong to the a.s. unique
infinite cluster. Show that

Pp

(

R(m) >
θ(p)|B(m)|

2

)

>
θ(p)

2
.

(b) Show that there exists a positive constant c1 so that for all n ∈ N

Pp(n 6 |C| <∞) > exp(−c1
√
n).

(Hint: Consider the set of vertices in B(m) that are connected to ∂B(m) by open paths of
edges.)

(c) Using duality or otherwise prove that there exists a positive constant c2 so that
for all n ∈ N

Pp(|C| = n) 6 exp(−c2
√
n).

(You may assume that if G is a connected subgraph of Z2 on n vertices, then there exists a
dual circuit containing G in its interior with the property that each of its edges crosses an
edge on the edge boundary of G. Moreover, it has size at least α

√
n, where α is a positive

constant. Properties of subcritical percolation may be used without proofs provided they
are stated clearly.)
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Let G = (V,E) be a finite connected graph on n vertices with unit resistances on
the edges. For any two vertices a and b let dG(a, b) stand for the number of edges on the
shortest path in G joining a and b.

(a) State Thomson’s and Rayleigh’s monotonicity principles for effective resistance.
Show that for all vertices a, b

Reff(a, b) 6 dG(a, b).

(b) Let X be a simple random walk on G starting from a. The cover time is the
first time X has visited all the vertices of G at least once, i.e.

τcov = min{t > 0 : {X0, . . . ,Xt} = V }.

Show that Ea[τcov] 6 2(n− 1)|E|.
(Hint: Consider a spanning tree.)

(c) Show that for all vertices a and b the expected commute time Ea[τb] + Eb[τa] is
at least twice the square of their graph distance, i.e.

Ea[τb] + Eb[τa] > 2dG(a, b)
2.

(Standard results from the lecture course should be stated clearly, but may be used without
proof.)

4

Let G be an infinite connected unweighted graph.

(a) Define the terms “wired uniform spanning forest” (WSF) and “free uniform
spanning forest” (FSF).

(b) Suppose that G is a recurrent graph. Show that WSF=FSF.

Suppose now that G is an infinite connected unweighted tree.

(c) Show that G is transient if and only if there exists an edge e so that upon removal
it creates two transient components.

(d) Suppose that WSF=FSF. Show that G is recurrent.
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