MATHEMATICAL TRIPOS Part III

Monday, 11 June, 2018 1:30 pm to 3:30 pm

PAPER 213

STOCHASTIC NETWORKS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Write an essay on mathematical models of loss networks. Your essay should cover the following topics, but need not be restricted to them.

- (i) The stationary distribution for a loss network operating under fixed routing.
- (ii) The Erlang fixed point approximation for a loss network, including its existence and uniqueness when routing is fixed.
- (iii) An example of a loss network with alternative routing where the Erlang fixed point approximation is not unique.

$\mathbf{2}$

Define a Wardrop equilibrium for the flows in a congested network.

Show that if the delay $D_j(y_j)$ at link j is a continuous, strictly increasing function of the throughput, y_j , of link j then a Wardrop equilibrium exists and solves an optimisation problem of the form

minimise
$$\sum_{j \in J} \int_0^{y_j} D_j(u) du$$

over $x \ge 0, y$
subject to $Hx = f, \quad Ax = y$,

where $f = (f_s, s \in S)$ and f_s is the (fixed) aggregate flow between source-sink pair s. What is the interpretation of the matrices A and H? Are the equilibrium throughputs, y_j , unique? Are the equilibrium flows, x_s , unique? Justify your answers.

Suppose now that the aggregate flow between source-sink pair s is not fixed, but is a continuous, strictly decreasing function $B_s(\lambda_s)$, where λ_s is the minimal delay over all routes serving the source-sink pair s, for each $s \in S$. For the extended model, show that an equilibrium exists and solves the optimisation problem

minimise
$$\sum_{j \in J} \int_0^{y_j} D_j(u) du - G(f)$$

over $x \ge 0, \ y, \ f$
subject to $Hx = f, \quad Ax = y$,

for a suitable choice of the function G(f), to be determined. Are the equilibrium sourcesink flows, f_s , unique?

UNIVERSITY OF

3

Briefly outline a mathematical model of a slotted infinite-population random access scheme, where N_t is the number of stations with a packet to transmit and each such station independently transmits its packets with probability $1/S_t$. Interpret the equation

$$N_{t+1} = N_t + Y_t - I[Z_t = 1]$$

where $Z_t = 0, 1$ or * according as 0, 1 or more than 1 packets are transmitted in slot (t, t + 1) and Y_t is the number of arrivals in slot (t, t + 1), assumed to have a Poisson distribution with mean ν .

Suppose that S_t is updated by the recursion

$$S_{t+1} = \max\{1, S_t + aI[Z_t = 0] + bI[Z_t = 1] + cI[Z_t = *]\}$$

for a triplet (a, b, c). Briefly explain why (S_t, N_t) is a Markov chain.

Motivate the differential equation

$$\frac{\mathrm{d}s}{\mathrm{d}t} = (a-c)e^{-\kappa} + (b-c)\kappa e^{-\kappa} + c, \qquad \frac{\mathrm{d}n}{\mathrm{d}t} = \nu - \kappa e^{-\kappa}$$

where $\kappa = n/s$ in terms of the expected drift of (N_t, S_t) .

Show that if (a, b, c) = (2 - e, 0, 1) then, provided $\nu < e^{-1}$, any trajectory solving the differential equations converges to the origin. What happens if $\nu > e^{-1}$?

Show that the Markov chain (S_t, N_t) is transient whatever the choice of (a, b, c) if $\nu > e^{-1}$.

UNIVERSITY OF

 $\mathbf{4}$

Let J be a set of resources, and R a set of routes, where a route $r \in R$ identifies a subset of J. Let C_j be the capacity of resource j, and suppose the number of flows in progress on each route is given by the vector $n = (n_r, r \in R)$. Define a proportionally fair rate allocation and describe its relation to the solution of an optimisation problem.

Consider a network of resources $J = \{1, 2, 3, 4\}$, each of unit capacity, and routes $R = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\}$. Given $n = (n_r, r \in R)$, find the rate x_r of each flow on route r, for each $r \in R$, under a proportionally fair rate allocation. Show, in particular, that if $n_{\{1,2\}} > 0$ then

$$x_{\{1,2\}}n_{\{1,2\}} = \frac{n_{\{1,2\}} + n_{\{3,4\}}}{n_{\{1,2\}} + n_{\{2,3\}} + n_{\{3,4\}} + n_{\{4,1\}}}.$$

Suppose now that flows describe the transfer of documents through a network, that new flows originate as independent Poisson processes of rate $\rho_r, r \in R$, and that document sizes are independent and exponentially distributed with unit mean for each route $r \in R$. Determine the transition rates of the resulting Markov process $n = (n_r, r \in R)$. Show that the stationary distribution of the Markov process $n = (n_r, r \in R)$ takes the form

$$\pi(n) = B^{-1} \left(\begin{array}{c} n_{\{1,2\}} + n_{\{2,3\}} + n_{\{3,4\}} + n_{\{4,1\}} \\ n_{\{1,2\}} + n_{\{3,4\}} \end{array} \right) \prod_{r \in R} \rho_r^{n_r},$$

provided it exists.

END OF PAPER