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Write an essay on mathematical models of loss networks. Your essay should cover
the following topics, but need not be restricted to them.

(i) The stationary distribution for a loss network operating under fixed routing.

(ii) The Erlang fixed point approximation for a loss network, including its existence and
uniqueness when routing is fixed.

(iii) An example of a loss network with alternative routing where the Erlang fixed point
approximation is not unique.

2

Define a Wardrop equilibrium for the flows in a congested network.

Show that if the delay Dj(yj) at link j is a continuous, strictly increasing function of
the throughput, yj , of link j then a Wardrop equilibrium exists and solves an optimisation
problem of the form

minimise
∑

j∈J

∫ yj

0

Dj(u)du

over x > 0, y

subject to Hx = f, Ax = y ,

where f = (fs, s ∈ S) and fs is the (fixed) aggregate flow between source-sink pair s.
What is the interpretation of the matrices A and H? Are the equilibrium throughputs,
yj, unique? Are the equilibrium flows, xs, unique? Justify your answers.

Suppose now that the aggregate flow between source-sink pair s is not fixed, but is
a continuous, strictly decreasing function Bs(λs), where λs is the minimal delay over all
routes serving the source-sink pair s, for each s ∈ S. For the extended model, show that
an equilibrium exists and solves the optimisation problem

minimise
∑

j∈J

∫ yj

0

Dj(u)du−G(f)

over x > 0, y, f

subject to Hx = f, Ax = y ,

for a suitable choice of the function G(f), to be determined. Are the equilibrium source-
sink flows, fs, unique?
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Briefly outline a mathematical model of a slotted infinite-population random access
scheme, where Nt is the number of stations with a packet to transmit and each such station
independently transmits its packets with probability 1/St. Interpret the equation

Nt+1 = Nt + Yt − I[Zt = 1]

where Zt = 0, 1 or ∗ according as 0, 1 or more than 1 packets are transmitted in slot
(t, t + 1) and Yt is the number of arrivals in slot (t, t + 1), assumed to have a Poisson
distribution with mean ν.

Suppose that St is updated by the recursion

St+1 = max{1, St + aI[Zt = 0] + bI[Zt = 1] + cI[Zt = ∗]}

for a triplet (a, b, c). Briefly explain why (St, Nt) is a Markov chain.

Motivate the differential equation

ds

dt
= (a− c)e−κ + (b− c)κe−κ + c,

dn

dt
= ν − κe−κ

where κ = n/s in terms of the expected drift of (Nt, St).

Show that if (a, b, c) = (2 − e, 0, 1) then, provided ν < e−1, any trajectory solving
the differential equations converges to the origin. What happens if ν > e−1?

Show that the Markov chain (St, Nt) is transient whatever the choice of (a, b, c) if
ν > e−1.
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Let J be a set of resources, and R a set of routes, where a route r ∈ R identifies
a subset of J . Let Cj be the capacity of resource j, and suppose the number of flows in
progress on each route is given by the vector n = (nr, r ∈ R). Define a proportionally fair
rate allocation and describe its relation to the solution of an optimisation problem.

Consider a network of resources J = {1, 2, 3, 4}, each of unit capacity, and routes
R = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}. Given n = (nr, r ∈ R), find the rate xr of each flow on
route r, for each r ∈ R, under a proportionally fair rate allocation. Show, in particular,
that if n{1,2} > 0 then

x{1,2}n{1,2} =
n{1,2} + n{3,4}

n{1,2} + n{2,3} + n{3,4} + n{4,1}
.

Suppose now that flows describe the transfer of documents through a network, that
new flows originate as independent Poisson processes of rate ρr, r ∈ R, and that document
sizes are independent and exponentially distributed with unit mean for each route r ∈ R.
Determine the transition rates of the resulting Markov process n = (nr, r ∈ R). Show that
the stationary distribution of the Markov process n = (nr, r ∈ R) takes the form

π(n) = B−1

(

n{1,2} + n{2,3} + n{3,4} + n{4,1}

n{1,2} + n{3,4}

)

∏

r∈R

ρnr
r ,

provided it exists.
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