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1

Consider a one-period n-asset market model with the price of asset i at time
t ∈ {0, 1} denoted P i

t .

(a) What is an arbitrage strategy?

(b) What is a pricing kernel?

(c) Show that there is no arbitrage if there exists a pricing kernel.

Now consider the case where n = 3. The first asset is cash, so that P 1
t = 1 for all t.

The second asset is a stock with price P 2
t = St given by
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(The diagram should be read S0 = 10 and P(S1 = 15) = 1/3, etc. The third asset is a put
option written on the stock with maturity T = 1, strike K = 11 and initial price P 3

0 = ξ0.

(d) What are the possible values of ξ0 such that the market has no arbitrage?

(e) Suppose that ξ0 = 1. Find the set of all arbitrages, and the subset of pure-investment
(i.e. no initial consumption) arbitrages.

2

Suppose that X = (Xt)t>0 is a discrete-time local martingale.

(a) Show that if X is integrable, i.e. E(|Xt|) <∞ for all t > 0, then X is a true martingale.

(b) Show that if X is non-negative, then X is a true martingale.

(c) Let K = (Kt)t>1 be a predictable process. Let M0 = 0 and

Mt =

t∑
s=1

Ks(Xs −Xs−1)

for t > 1. Show that M is a local martingale.

(d) Suppose X is a non-negative super martingale and define a stopping time by τ =
inf{t > 0 : Xt = 0}. Show that Xt = 0 on the event {t > τ}.
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A discrete-time Markov process (Xt)t>0 is called affine iff there exist (finite-valued)
functions A and B such that

logE[eθX1 |X0 = x] = A(θ)x+B(θ)

for all real θ and x.

(a) Let (ξt)t>1 be an independent and identically distributed sequence, and let

logE[eθξ1 ] = ψ(θ)

for all real θ where ψ is a given function. Let the Markov processX evolve via the equation

Xt = aXt−1 + b+ ξt

where a and b are given constants. Show that X is affine.

(b) Let X be an affine process. Show that for all t > 1 there are functions At and Bt such
that

logE[eθ1X1+...+θtXt |X0 = x] = At(θ1, . . . , θt)x+Bt(θ1, . . . , θt)

for all θ1, . . . , θt and x.

(c) Suppose X is the affine process defined in part (a). Find explicit formulae for the
functions At and Bt defined in part (b), in terms of the parameters a, b and the function
ψ.

(d) Consider a discrete-time financial market model where the unique martingale deflator
Y evolves via the equation

Yt = eXtYt−1

where X is an affine process. Show that there exist functions α and β such that, for any
0 6 t 6 T , the time-t price Pt,T of a zero-coupon bond of maturity T is given by

Pt,T = eα(T−t)Xt+β(T−t).
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Let (St)t>0 be a discrete-time martingale such that S0 is an integer and for all t > 1
the increment St − St−1 is valued in the set {−1, 0, 1}.
(a) Prove the identity

(ST −K − 1)+ − 2(ST −K)+ + (ST −K + 1)+ = 1{ST=K}

for integers K and T > 0.

(b) Prove the identity

(ST −K)+ = (S0 −K)+ +

T∑
t=1

f(St−1 −K)(St − St−1) +
1

2

T∑
t=1

1{St−1=K}(St − St−1)
2

for integers K and T > 1, where f is defined by

f(x) = 1{x>0} +
1

2
1{x=0}.

Let
C(T,K) = E[(ST −K)+]

for integers K and T > 0 and

σ2(T,K) = Var(ST+1|ST = K)

for integers K and T such that |K − S0| 6 T .

(c) Using parts (a) and (b), or otherwise, prove the identity

C(T + 1,K) −C(T,K) =
1

2
σ2(T,K)[C(T,K + 1)− 2C(T,K) + C(T,K − 1)]

for integers K and T such that |K − S0| 6 T .

(d) Show that the transition probabilities P(ST+1 = H|ST = K) for integers K and T
such that |K − S0| 6 T can be recovered from the function C(·, ·).
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Let ξ be a random variable with finite exponential moments. Define two functions

C(k) = E[(eξ − ek)+] for real k

and
M(z) = E[ezξ] for complex z.

(a) Show that the identity

M(z) =

∫ ∞

−∞
C(k)f(z, k)dk

holds for all complex z = x+ iy with x > 1, where f(z, k) = z(z − 1)e(z−1)k.

(b) Show that the identity

C(k) =
1

2πi

∫ x0+i∞

x0−i∞

M(z)

f(z, k)
dz

holds for all real k and x0 > 1.

[You may assume a complex path integral can be computed as a Lebesgue integral
by the formula ∫ x0+i∞

x0−i∞
h(z)dz = i

∫ +∞

−∞
h(x0 + iy)dy.

Also, you may use the following identity without proof:

1

2πi

∫ x0+i∞

x0−i∞

eaz

z(z − 1)
dz = (ea − 1)+

for real a and real x0 > 1.]

(c) Consider a continuous-time market model with three assets. The first asset is cash, so
the risk-free interest rate is zero.

The second asset is a stock whose time-t price St evolves as

dSt = StσtdW
S
t

where W S is a Brownian motion. Finally, the spot volatility process (σt)t>0 is bounded
and satisfies the stochastic differential equation

dσt = A(σt)dt+B(σt)dW
σ
t

where A and B are given functions andW σ is another Brownian motion with 〈W S ,W σ〉t =
ρt for a given correlation parameter ρ.

The third asset is a call option with strike K and maturity T . The call’s time-t
price Ct is computed as follows. Suppose that for all complex z, the bounded function
U(·, ·, z) satisfies the partial differential equation

1

2
σ2z(z − 1)U +

∂U

∂t
+ (A(σ) + zσB(σ)ρ)

∂U

∂σ
+

1

2
B(σ)2

∂2U

∂σ2
= 0
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with terminal condition U(T, σ, z) = 1 for all σ and z. Set

Ct =
1

2πi

∫ x0+i∞

x0−i∞

StU(t, σt, z)

f(z, log(K/St))
dz

for a fixed x0 > 1. Show that the market has no arbitrage. [You may use standard results
of stochastic calculus, such as Itô’s formula, without proof. You may also assume that any
local martingale appearing in your calculation is a true martingale. Finally, you may use
any fundamental theorems of asset pricing without proof.]

6

Consider a two asset model with price dynamics

dBt = Btrtdt

dSt = St(µtdt+ σtdWt)

where r, µ, σ are bounded continuous processes such that σt(ω) > 0 for all (t, ω) and where
W is a Brownian motion. Suppose all processes are adapted to the filtration generated by
W .

(a) Show that there is a unique local martingale deflator Y = (Yt)t>0 with Y0 = 1, and
that its dynamics are of the form

dYt = −Yt(rtdt+ λtdWt)

where the process λ is to be expressed in terms of the processes r, µ and σ.

(b) Let X = (Xt)t>0 be the wealth of a self-financing investor. Assume that the investor
does not consume and that the wealth is always non-negative. Show that the process XY
is a supermartingale.

(c) Let ξT be the payout of a European contingent claim with maturity T > 0. Assume
ξT is non-negative and bounded. Show that the investor can replicate the payout of the
claim. Show that the minimal initial cost of the replicating strategy is E[YT ξT ]. [You may
use standard results from stochastic calculus.]

(d) Now assume the processes r, σ, µ are constant and that the claim has payout ξT =
√
ST .

Find the minimal cost replicating strategy. [You may use without proof standard results
from continuous-time financial models.]
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