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Let X1, . . . ,Xn be independent and identically distributed real-valued random
variables with density f . Given a point x ∈ R define the k-nearest neighbour distance
of x, denoted ρ(k)(x).

For r > 0 and x ∈ R write px(r) =
∫ x+r
x−r f(y) dy. Show that the random variable

defined by P = px(ρ(k)(x)) has Beta density

Bk,n+1−k(s) =
Γ(n+ 1)

Γ(k)Γ(n + 1− k)
sk−1(1− s)n−k

for s ∈ (0, 1). Calculate EP and EP 2.

Henceforth suppose that f is L-Lipschitz and strictly positive on all of R. Prove
that |px(r)− 2rf(x)| 6 Lr2 and hence, writing p−1

x for the inverse of px, verify that

|2f(x)p−1
x (s)− s| 6

Ls2

f(x)2

for any s ∈ (0, 1) and x such that f(x) > L1/2.

Write f̂(k)(x) = k
2(n+1)ρ(k)(x)

for the k-nearest neighbour density estimator at x.

Prove that
∣

∣

∣

∣

E

(

f(x)

f̂(k)(x)

)

− 1

∣

∣

∣

∣

6
k + 1

n+ 2

for any x such that f(x) > L1/2.
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Consider the fixed-design nonparametric regression model in which we observe

Yi = m(xi) + σǫi for i = 1, . . . , n, where xi = i/n, σ ∈ (0,∞) and ǫ1, . . . , ǫn
i.i.d.
∼ N(0, 1).

For a kernel K : R → [0,∞) and bandwidth h ∈ (0,∞) give the definition of the local
polynomial estimator m̂h(x; p) of m(x), and derive the Nadaraya–Watson (local constant)
estimator m̂(x).

We henceforth restrict attention to the uniform kernel K(x) = 2−1
1{|x|61}. For

L > 0 let
ΘL = {m : |m(y)−m(x)| 6 L|x− y| for all x, y ∈ [0, 1]}

denote the set of L-Lipschitz functions on [0, 1]. Writing Em for the expectation when the
true mean function is m, show that

sup
m∈ΘL

Em

[
∫ 1−h

h
{m̂h(x)−m(x)}2 dx

]

6 L2h2 +
3σ2

2nh

whenever nh > 1.

Deduce that there exists n0 depending only on L and σ2 such that, for n > n0,

inf
h∈(0,1/3)

sup
m∈ΘL

Em

[
∫ 1−h

h
{m̂h(x)−m(x)}2 dx

]

6 C

(

Lσ2

n

)2/3

where C > 0 is a constant that you should specify.

Fix x0 ∈ (0, 1). State Le Cam’s two point lemma and use it to show that there
exists a constant c > 0 such that

inf
m̃

sup
m∈ΘL

Em[{m̃(x0)−m(x0)}
2] > c

(

Lσ2

n

)2/3

,

where the infimum is taken over all estimators m̃ based on {Y1, . . . , Yn}.

[Hint: You may wish to consider the function m1(x) = λhK(x−x0
h ), where

K(t) = exp(− 1
1−t2

)1{|t|61} and λ is a scalar to be chosen.]
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For a non-degenerate distribution function G define the domain of attraction of G,
denoted D(G), in the context of extreme value theory for sample maxima.

Defining the notion of a regularly varying function, state necessary and sufficient
conditions for a distribution function F to satisfy F ∈ D(G) for the three cases of G being
the Fréchet(α), the Negative Weibull(α) and the Gumbel distribution functions. State
sufficient conditions in terms of the hazard function.

For a positive integer m let fm(x) = xm−1

(m−1)!e
−x denote the Γ(m, 1) density. Writing

Fm for the corresponding distribution function show that

Fm(x+ βn)
n → e−e−x

as n → ∞, for all x ∈ R, where βn = log n+ (m− 1) log log n− log((m− 1)!). [Hint: You
may first wish to show that

1− Fm(x) = e−x
m−1
∑

j=0

xj

j!

for all x ∈ [0,∞).]

4

Let Y1, . . . , Yn be independent, mean-zero random variables with Yi taking values
in [ai, bi]. Prove Hoeffding’s inequality,

P

(∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣
> ǫ

)

6 2 exp
(

−
2ǫ2

∑n
i=1(bi − ai)2

)

,

for each ǫ > 0.

Now write M := maxi=1,...,nmax{−ai, bi} and σ2 := maxi=1,...,n EY
2
i . Assuming

that you may interchange the order of expectation and summation where necessary, prove
Bennett’s inequality,

P

(∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣
> ǫ

)

6 2 exp
(

−
nσ2

M2
φ
(Mǫ

nσ2

))

,

for each ǫ > 0, where φ(x) = (1 + x) log(1 + x) − x. [Hint: You may wish to bound a
moment generating function using the fact that EY k

i 6 σ2Mk−2 for all k > 2.]

Let X ∼ Bin(n, pn) with pn → 0 and npn → ∞ as n → ∞. For a fixed
C > 0 and large n, which of the two inequalities above provides a better bound on

P

( |X − npn|
√

npn(1− pn)
> C

)

?

Part III, Paper 210



5

END OF PAPER

Part III, Paper 210


