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1 Statistics in Medical Practice

(a) Consider a homogeneous continuous-time Markov process with transition probabilities
prs(t).

(i) Write down a formula for the expected total time Trs(t) spent in a state s in the
period between time 0 and time t, for an individual who is in state r at time 0,
in two equivalent forms: firstly, as the expectation of an integral of an indicator
for an event, and secondly, in terms of the transition probabilities.

(ii) We now wish to derive a formula for the expected number of transitions Ers(t)
that an individual, who is in state r at time 0, makes to state s before time t.
Express this as the expectation of an integral of an indicator for an event.

(iii) Obtain the probability density of the event from part (ii) in terms of the
transition intensities qrs and/or transition probabilities of the Markov process,
for example, by expressing the event as a composition of simpler events whose
probabilities can be written without derivation.

(iv) Thus deduce a formula for the expected number of transitions Ers(t), in terms
of the total time spent in each state i over the same period, Tri(t).

(b) Consider a chronic disease model with three states: no disease (state 1), moderate
disease (state 2), severe disease (state 3), and instantaneous transitions only permitted
between adjacent states. We wish to investigate how the risk of a person getting
moderate disease, and the risk of progression to severe disease, is related to their age.
We have a dataset, recording observations of the disease status of a set of patients, at
a finite series of times. The following data are recorded for the first person.

Age (years)

50 No disease
55 No disease
56 Severe disease

(i) Obtain an expression for this person’s contribution to the likelihood of a
continuous-time Markov model, in the simplest closed form, as a function of
four parameters:

• the transition intensities from no disease to moderate disease, q12, and from
moderate to severe disease, q23, for a person aged 50 years

• two parameters describing the relation between age and each of the transition
intensities, which you should define explicitly.

You may use, without further simplification, an expression of the form p12(t|λ, µ)
to denote the transition probability from no disease to moderate disease over an
interval of length t with constant transition intensities λ (from no to moderate
disease) and µ (from moderate to severe disease), however you should substitute
appropriate values of t, λ and µ.

(ii) State any simplifying assumptions being made to derive this likelihood (other
than the Markov assumption). If possible, suggest why at least one of these
assumptions is questionable given the data above.
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(c) Suppose we expect that on average, a 50 year old without the disease will get the
disease at age 60, while a 60 year old without the disease will get it at age 65.
Likewise we expect that on average, a 50 year old with moderate disease will experience
progression to severe disease at age 52, while a 60 year old with moderate disease will
progress at age 61.

Obtain the values of the four parameters in the model from part (b) that correspond
to these beliefs.

Part III, Paper 207 [TURN OVER



4

2 Statistics in Medical Practice
Consider a trial in which a new treatment is to be tested against a standard

treatment. When treatment k is given to a patient (where k = 0 denotes the standard
treatment and k = 1 the new treatment), a Bernoulli(pk) outcome is observed. Because a
response is desirable, pk is the probability of a desirable outcome. Denote the total number
of patients on treatment k as nk (with nk > 1) and the observed outcome from patient i
on treatment k as yi,k for i = 1, . . . , nk. Patients will be randomised to treatments using
a response-adaptive randomisation procedure. Let the allocation ratio be defined R = n0

n1
.

(a) Show that for a fixed sample size n = n0 + n1 the allocation ratio which maximises
the power of the Z-test given n and as a function of the pk parameters (i.e. Neyman

allocation) is: R∗ =
√

p0(1−p0)
p1(1−p1)

.

Note: the Z-test (Wald Test) is is based on a statistic Z = p̂0−p̂1
√

σ2

∆p̂
(n0,n1)

with

σ2
∆p̂(n0, n1) =

p0(1−p0)
n0

+ p1(1−p1)
n1

where p̂k =

∑nk

i=1 yi,k
nk

for k = 0, 1.

(b) Assume that p0 > p1. Show that if p0 > (1− p1) then the above derived allocation
procedure assigns more patients to the inferior treatment (i.e. the new treatment).

(c) Suppose 9 patients have been already assigned to a treatment, 5 patients to the
standard treatment and 4 patients to the new treatment. The observed success
rates are: p̂0 = 3/5 and p̂1 = 1/4. Obtain expressions, in the simplest form, for the
probability that patient 10 will be assigned to treatment 0 if: (i) patients are assigned
using R∗ as in part (a) for the allocation probabilities; (ii) the design is a randomised
play the winner which started with a balanced urn with a 1:1 composition - a
RPW(1,1) design; (iii) the patients are assigned optimally as derived by dynamic
programming (with the goal of maximising expected successes in n patients), both
arms started with a uniform prior on each pk and patient 10 is the last patient of
the trial. Note: there is no need to evaluate square roots.

(d) Suppose 10 patients have been already assigned to a treatment. After the 10th
patient’s outcome is assessed a statistical test is done at a 10% significance level
and shows no significant difference between the effect of the two treatments. The
trialist decides to continue to recruit another ten patients and then do a second test
at a 10% significance level. Comment on the implications of this additional test on
the error rate of the trial and state what part of the procedure needs to be modified
to allow this to be done in a statistically robust way.
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3 Statistics in Medical Practice

(a) Provide a definition of the average causal effect of binary risk factor X taking value 1
versus taking value 0 on an outcome Y using conterfactual language.

(b) What is an instrumental variable? What assumptions must an instrumental variable
satisfy?

(c) In the causal diagrams below, in which of the six scenarios is the genetic variant G a
valid instrumental variable for the risk factor B and the outcome Y (assuming that
A, C and U are unmeasured)?

(d) Please read the shortened paper provided in the supplementary material over the page.
What two ways do the authors of this paper try to demonstrate that elevated calcium
intake is linked with increased risk of migraine?

(e) For each approach, describe three strengths and three weaknesses (potential or actual)
of the approach in trying to assess the causal status of calcium as a causal risk factor
for migraine.

(f) How could the authors strengthen their case in testing this causal hypothesis? Provide
two suggestions, together with a justification as to how these would help strengthen
causal inferences.
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Supplementary material - Serum calcium and risk of mi-

graine: a Mendellian randomization study

A migraine is a severe headache. Calcium is a nutrient that occurs in many foods and plays
a vital role in the chemistry of cells. We aimed to assess the hypothesis that dietary calcium
intake is a causal risk factor for migraine headaches. We first tested whether migraine
headache diagnoses are associated with elevated serum calcium levels. To do this, we first
obtained over 1 million de-identified health records. We observed co-occurrence between
migrained headache diagnosis and hypercalcaemia (meaning excess calcium levels): odds
ratio (OR) = 1.58 for migraine diagnosis comparing hypercalcaemia versus normal calcium
levels, P = 4.75× 10−13, including adjustments for age, sex, and ancestry. These data are
consistent with the hypothesis that migraine and elevated calcium levels occur frequently
in our patient cohort.

We next tested whether genetically elevated serum calcium levels are associated with
increased susceptibility to migraine headache using a two-sample Mendelian randomization
study design. We constructed a genetic risk score (GRS) using eight genetic variants
associated with serum calcium levels (see Figure), and tested the association of this score
with the outcome. The score explained 1.25% of the variance in serum calcium levels.
Based on 23, 285 migraine sufferers and 95, 425 controls, we found that elevation of serum
calcium levels by a hypothetical 1 mg/dL resulting from our genetic score wsa associated
with an increase in risk of migraine (OR = 1.80, 95% CI: 1.31, 2.46, P = 2.5 × 10−4, see
Table). We also performed sensitivity analysis methods for Mendelian randomization: the
weighted mediant and MR-Egger methods.

Table: Summary estimates for genetic variants used for causal inference analysis for
serum calcium for migraine traits

Odds Ratio (95% CI) P -value

Weighted GRS 1.80 (1.31, 2.46) 2.5 × 10−4

Weighted-median 1.92 (1.30, 2.84) 1.6 × 10−3

MR-Egger (Causal Effect) 1.97 (1.05, 3.69) 0.037

MR-Egger (Bias Term) -0.003 (-0.025, 0.019) 0.74

Footnote: Odds ratios are given as change in migraine risk scaled to a unit increase in
geneticall-predicted serum calcium (1 mg/dL).
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Figure: Summary association data for the association of each serum calcium-associated
variant with migraine.

Calcium effect is the increase in serum calcium per additional copy of the variant allele.
Odds ratio (OR) for migraine per additional copy of the variant allele. P -value (P ) is for

the genetic association with migraine. CI = Confidence Interval

Adapted and shortened from “Serum calcium and risk of migraine: a Mendelian
randomization study” by Yin et al, HumMol Genet 2017; 26(4):820-828.
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4 Analysis of Survival Data

(a) Define the survivor function F(t) for a continuous random time-to-event-variable T .

(b) A time-to-event dataset has d events in the interval tL < t 6 tR, with no censoring in
that interval. Given that immediately after tL there are r individuals at risk:

(i) write down a simple estimate of the probability P [T > tR|T > tL].

(ii) what is meant by an individual being right-censored at t? Why is it not
possible in general to write down a simple estimate if it is known that there
are c individuals right-censored in the interval?

(iii) how would your answer to part (b)(i) differ if there are individuals right-censored
at tR but there no individuals censored in tL < t < tR?

(c) The Kaplan-Meier estimator F̂(t) for the survivor function can be derived by consid-
ering a finite set of potential event times {a1, . . . , aj , . . . , ag} with aj−1 < aj.

(i) what is meant by a potential event time?

(ii) what is the necessary condition that the set of potential event times must satisfy?

(iii) outline the derivation of the Kaplan-Meier estimator.

(iv) explain why the estimator does not depend on the choice of the set of potential
event times, provided that condition (c)(ii) remains satisfied.

(d) Derive an alternative estimator F̃(t) of the survivor function by constructing a set of
potential right-censoring times {c0, . . . , ck, . . . , ch} such that 0 = c0 < . . . ck−1 < ck <
· · · < ch = t with rk individuals being at risk at t = ck, d0 individuals having an event
at t = 0 and dk individuals having an event in ck−1 < t 6 ck.

Show that F̃(t) = F̂(t).
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5 Analysis of Survival Data
A time-to-event dataset {(xi, vi): i = 1, . . . , n} comprises n individuals: xi being

either the time of the observed event (vi = 1) or the time of censoring (vi = 0) for the ith
individual. There are no ties in the dataset.

(a) Assume that all individuals are subject to the same hazard function. Derive the
Nelson-Aalen estimator for the common integrated hazard H(t) in the form

Ĥ(t) =
∑

i:xi6t

vi∑
j:xj>xi

1
.

(b) Assume now that the ith individual is subject to hazard exp(βzi)h0(t) where h0(t) is
a baseline hazard, β is a scalar parameter, and z is a scalar parameter:

(i) how would you construct a partial likelihood for β?

(ii) show that the derivative of the log partial likelihood for β is given by

S ′(β) =
n∑

i=1

vi

[
zi −

∑
j:xj>xi

zj exp(βzj)∑
j:xj>xi

exp(βzj)

]
.

(iii) interpret the expression for S ′(β) in terms of the expected value of z for the
individual having an event at a particular time, conditional on the history of the
process to just before that time. Interpret the maximisation of S(β) to obtain
an estimate β̂ of β in terms of those expected values.

(iv) how would you adapt the derivation of the Nelson-Aalen estimator to provide an
estimator Ĥ0(t) of the integrated baseline hazard?

(v) the Martingale residual yi is defined by

yi = vi − exp(β̂zi)Ĥ0(xi).

Interpret the terms on the right hand side of this equation.

(vi) outline how Martingale residuals can be used to check the functional form of an
explanatory variable in a time-to-event model.

(vii) show that
∑n

i=1 yi = 0. Hint: you may find it helpful to first write out the sum

for a dataset with three or four individuals.
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6 Analysis of Survival Data
Individuals are at risk of two independent events: A and B. The corresponding

continuous time-to-event variables TA, TB have densities fA(t), fB(t) respectively with
FA(t) =

∫∞

t
fA(t)dt and FB(t) =

∫∞

t
fB(t)dt.

(i) What is the probability that TA < TB?

(ii) Derive and interpret the equation:

∫ t

0
fA(t

′)FB(t
′)dt′ +

∫ t

0
FA(t

′)fB(t
′)dt′ + FA(t)FB(t) = 1.

(iii) What is the density of TA: (1) given TA < TB and (2) given TB < TA?

TB is now to be interpreted as a a time-to-censoring variable with limt↑∞ tFB(t) = 0.
The variable X is defined as min(TA, TB).

(iv) Find the density and expectation of X in terms of FA and FB .

(v) Assume that TA has an exponential distribution with mean µ. Define a
new variable U by U = X+µI[X = TB ] where I is the indicator function.
Show that U has the same expectation as TA.

END OF PAPER
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