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1 Let Y ∈ R
n be a vector of observations with Y = µ0 + ε for some fixed µ0 ∈ R

n

and E(ε) = 0. Define
S = {i : 1 6 i 6 n− 1, µ0

i 6= µ0
i+1}

to be the set of indices where µ0 changes, and suppose s = |S| is small compared to n.
Describe a method for estimating µ0 using the minimiser of an appropriate penalised least
squares objective function that you should specify.

Explain the closed testing procedure for multiple testing and state and prove a result
concerning the error control it provides against falsely rejecting null hypotheses.

Now let
I = {[i, j] : i, j ∈ {1, . . . , n} and i < j},

where [i, j] = {i, i + 1, . . . , j}. For each I ∈ I, let HI be the null hypothesis that µ0 is
constant on I, that is there exists m ∈ R with µ0

i = m for all i ∈ I. Suppose that for each
null hypothesis HI , we have an associated p-value qI . Define the adjusted p-value pI for
HI by

pI = max
J∈I:J⊇I

qJ
n

|J | .

Consider the procedure that rejects all HI where the adjusted p-values have pI 6 α.
Writing S = {i1, . . . , is} with i1 < · · · < is, let

T = {[1, i1], [i1 + 1, i2], [i2 + 1, i3], . . . , [is−1 + 1, is], [is + 1, n]}.

Explain why the procedure will make a false rejection if and only if HI is rejected for some
I ∈ T .

Finally show that the procedure makes no false rejections with probability at least
1− α.
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2 Let Y ∈ R
n be a vector of centred responses and X ∈ R

n×p a matrix of predictors
that have been centred and scaled to have ℓ2-norm

√
n. Write down the objective function

optimised by the ridge regression estimator and give a closed form expression for the
estimator with tuning parameter γ > 0. [You need not derive this expression.]

Now consider the penalised regression procedure defined by the objective function

(δ̂λ, β̂λ) = argminδ,β∈Rp

{

1

2n
‖Y −X(δ + β)‖22 + λ1‖δ‖1 + λ2‖β‖22

}

where λ1, λ2 > 0. Find an expression for β̂λ involving Y , X, δ̂λ, λ2 and n.

Thus show that δ̂λ is the minimiser of a Lasso objective with transformed design
matrix X̃ = AX and transformed response AY where A is a matrix you should specify.
[Hint: It may help to first multiply the objective function by 2n and define θ = Y − Xδ
and Q = (XTX + 2nλ2)

−1.]

Consider now the model

Y = X(δ0 + β0) + ε

and let Ω be the event that ‖X̃T (X̃β0 +Aε)‖∞/n 6 λ1. Show that on Ω,

1

n
‖X̃(δ̂λ − δ0)‖22 6 4λ1‖δ0‖1.

Conclude that on Ω we have

1

n
‖X(δ̂λ − δ0)‖22 6

4λ1‖δ0‖1
1− κ

when the maximum eigenvalue ofXQXT is κ < 1.
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3 Let A ∈ R
d×p have i.i.d. standard normal entries. Show that

P(|(ATA)jj/d− 1| > t) 6 2e−dt2/8

for all j = 1, . . . , p and t ∈ (0, 1). [You may use without proof the facts that the
moment generating function of a χ2

1 random variable is 1/
√
1− 2α for α < 1/2, and

e−α/
√
1− 2α 6 e2α

2

when |α| < 1/4.]

Now suppose V and W are independent standard normal random variables. By
considering the identity VW = (V+W )2/4−(V −W )2/4, show that the moment generating
function of VW is 1/

√
1− α2 for α ∈ (−1, 1). Hence show that

P(|(ATA)jk|/d > t) 6 2e−dt2/4.

for j 6= k and t ∈ (0, 1). [You may use without proof that 1/
√
1− α2 6 eα

2

when |α| 6 1/2.]

Finally show that provided c
√

log(p)/d < 1, with probability at least 1−2p−(c2/8−1)−
p−(c2/4−2), we have

∣

∣

∣

∣

‖A(u− v)‖22
d‖u− v‖22

− 1

∣

∣

∣

∣

6 sc
√

log(p)/d

for all u, v ∈ R
p with at most s/2 non-zero elements.
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4 What is the subdifferential of a convex function at a point x in its domain? State
a result concerning the minimisers of convex functions and their subdifferentials. Write
down an expression for the subdifferential of the ℓ1-norm.

Let Y ∈ R
n be a vector of responses and X ∈ R

n×p a matrix of predictors. Consider
the objective function

Qγ(β;Y ) =
1√
n
‖Y −Xβ‖2 + γ‖β‖1

where γ > 0. Now let β̂λ be a minimiser of

1

2n
‖Y −Xβ‖22 + λ‖β‖1

and define σ̂λ = ‖Y − Xβ̂λ‖2/
√
n. Show that writing γ(λ) = λ/σ̂λ, we have that β̂λ is

a minimiser of Qγ(λ)(·;Y ) when σ̂λ > 0. [Standard results stated in lectures concerning
subdifferentials may be used without proof.]

Assume the response Y follows a normal linear model of the form

Y = Xβ0 + ε,

where ε ∼ Nn(0, σ
2I). Suppose Z ∈ R

n is an additional predictor and let β̃γ be a minimiser
of Qγ(·;Z). Define Rγ = Z −Xβ̃γ . Finally define

T = RT
γ (Y −Xβ̂λ)/‖Rγ‖2

where it is assumed that Rγ 6= 0. Show that T = W +∆ where W ∼ N(0, σ2) and

|∆| 6
√
nγ‖β0 − β̂λ‖1.

5 Let G be a directed acyclic graph (DAG). What is meant by the moralised graph
of G? What does it mean for A to be d-separated from B by S, where A,B, S are disjoint
sets of nodes of G? State a result concerning presence or absence of an edge between two
vertices and their d-separation. [You need not define standard graph terminology such as
descendant, parent, topological order, collider or path in your answer.]

What does it mean for G to be faithful to a distribution P? What is the conditional
independence graph of a distribution P? Prove that if G is faithful to P then the moralised
graph of G is the conditional independence graph of P .

Now suppose Z ∼ Np(0,Σ) with Σ positive definite. Briefly describe the methods
of neighbourhood selection and the graphical Lasso for estimating the conditional indepen-
dence graph using independent data x1, . . . , xn ∼ Np(0,Σ). [You need not motivate or
justify why the methods work.]

Briefly explain how one could modify the PC algorithm to make use of an estimate of
the conditional independence graph to reduce computation.
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6 Let H be a reproducing kernel Hilbert space (RKHS) of functions on an input space
X with reproducing kernel k. Let Y ∈ R

n be a response vector satisfying Yi = f0(xi) + εi
with xi ∈ X for i = 1, . . . , n, f0 ∈ H, E(ε) = 0 and Var(ε) = σ2I. Write down the
optimisation problem solved by kernel ridge regression to produce an estimated regression
function f̂λ ∈ H when the tuning parameter is λ > 0.

Let K ∈ R
n×n be the matrix with ijth entry Kij = k(xi, xj) and eigenvalues

d1 > d2 > · · · > dn. Prove that

1

n
E

{ n
∑

i=1

{f0(xi)− f̂λ(xi)}2
}

6
σ2

n

1

λ

n
∑

i=1

min(di/4, λ) +
λ

4n
‖f0‖2H.

[You may use standard properties of positive definite kernels without proof, and you may
use the representer theorem without proof.]

END OF PAPER
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