MATHEMATICAL TRIPOS Part III

Monday, 4 June, 2018 1:30 pm to 4:30 pm

PAPER 205

MODERN STATISTICAL METHODS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1 Let $Y \in \mathbb{R}^n$ be a vector of observations with $Y = \mu^0 + \varepsilon$ for some fixed $\mu^0 \in \mathbb{R}^n$ and $\mathbb{E}(\varepsilon) = 0$. Define

 $S = \{i: 1 \leqslant i \leqslant n-1, \ \mu_i^0 \neq \mu_{i+1}^0\}$

to be the set of indices where μ^0 changes, and suppose s = |S| is small compared to n. Describe a method for estimating μ^0 using the minimiser of an appropriate penalised least squares objective function that you should specify.

Explain the closed testing procedure for multiple testing and state and prove a result concerning the error control it provides against falsely rejecting null hypotheses.

Now let

$$\mathcal{I} = \{ [i, j] : i, j \in \{1, \dots, n\} \text{ and } i < j \},\$$

where $[i, j] = \{i, i + 1, ..., j\}$. For each $I \in \mathcal{I}$, let H_I be the null hypothesis that μ^0 is constant on I, that is there exists $m \in \mathbb{R}$ with $\mu_i^0 = m$ for all $i \in I$. Suppose that for each null hypothesis H_I , we have an associated p-value q_I . Define the adjusted p-value p_I for H_I by

$$p_I = \max_{J \in \mathcal{I}: J \supseteq I} q_J \frac{n}{|J|}.$$

Consider the procedure that rejects all H_I where the adjusted *p*-values have $p_I \leq \alpha$. Writing $S = \{i_1, \ldots, i_s\}$ with $i_1 < \cdots < i_s$, let

$$\mathcal{T} = \{ [1, i_1], [i_1 + 1, i_2], [i_2 + 1, i_3], \dots, [i_{s-1} + 1, i_s], [i_s + 1, n] \}.$$

Explain why the procedure will make a false rejection if and only if H_I is rejected for some $I \in \mathcal{T}$.

Finally show that the procedure makes no false rejections with probability at least $1 - \alpha$.

2

CAMBRIDGE

2 Let $Y \in \mathbb{R}^n$ be a vector of centred responses and $X \in \mathbb{R}^{n \times p}$ a matrix of predictors that have been centred and scaled to have ℓ_2 -norm \sqrt{n} . Write down the objective function optimised by the ridge regression estimator and give a closed form expression for the estimator with tuning parameter $\gamma > 0$. [You need not derive this expression.]

Now consider the penalised regression procedure defined by the objective function

$$(\hat{\delta}_{\lambda}, \hat{\beta}_{\lambda}) = \operatorname{argmin}_{\delta, \beta \in \mathbb{R}^{p}} \left\{ \frac{1}{2n} \|Y - X(\delta + \beta)\|_{2}^{2} + \lambda_{1} \|\delta\|_{1} + \lambda_{2} \|\beta\|_{2}^{2} \right\}$$

where $\lambda_1, \lambda_2 > 0$. Find an expression for $\hat{\beta}_{\lambda}$ involving $Y, X, \hat{\delta}_{\lambda}, \lambda_2$ and n.

Thus show that $\hat{\delta}_{\lambda}$ is the minimiser of a Lasso objective with transformed design matrix $\tilde{X} = AX$ and transformed response AY where A is a matrix you should specify. [Hint: It may help to first multiply the objective function by 2n and define $\theta = Y - X\delta$ and $Q = (X^T X + 2n\lambda_2)^{-1}$.]

Consider now the model

$$Y = X(\delta^0 + \beta^0) + \varepsilon$$

and let Ω be the event that $\|\tilde{X}^T(\tilde{X}\beta^0 + A\varepsilon)\|_{\infty}/n \leq \lambda_1$. Show that on Ω ,

$$\frac{1}{n} \|\tilde{X}(\hat{\delta}_{\lambda} - \delta^0)\|_2^2 \leqslant 4\lambda_1 \|\delta^0\|_1.$$

Conclude that on Ω we have

$$\frac{1}{n} \|X(\hat{\delta}_{\lambda} - \delta^0)\|_2^2 \leqslant \frac{4\lambda_1 \|\delta^0\|_1}{1 - \kappa}$$

when the maximum eigenvalue of XQX^T is $\kappa < 1$.

UNIVERSITY OF

4

3 Let $A \in \mathbb{R}^{d \times p}$ have i.i.d. standard normal entries. Show that

$$\mathbb{P}(|(A^T A)_{jj}/d - 1| \ge t) \le 2e^{-dt^2/8}$$

for all j = 1, ..., p and $t \in (0, 1)$. [You may use without proof the facts that the moment generating function of a χ_1^2 random variable is $1/\sqrt{1-2\alpha}$ for $\alpha < 1/2$, and $e^{-\alpha}/\sqrt{1-2\alpha} \leq e^{2\alpha^2}$ when $|\alpha| < 1/4$.]

Now suppose V and W are independent standard normal random variables. By considering the identity $VW = (V+W)^2/4 - (V-W)^2/4$, show that the moment generating function of VW is $1/\sqrt{1-\alpha^2}$ for $\alpha \in (-1,1)$. Hence show that

$$\mathbb{P}(|(A^T A)_{jk}|/d \ge t) \le 2e^{-dt^2/4}.$$

for $j \neq k$ and $t \in (0,1)$. [You may use without proof that $1/\sqrt{1-\alpha^2} \leqslant e^{\alpha^2}$ when $|\alpha| \leqslant 1/2$.]

Finally show that provided $c\sqrt{\log(p)/d} < 1$, with probability at least $1-2p^{-(c^2/8-1)}-p^{-(c^2/4-2)}$, we have

$$\left|\frac{\|A(u-v)\|_2^2}{d\|u-v\|_2^2} - 1\right| \leqslant sc\sqrt{\log(p)/d}$$

for all $u, v \in \mathbb{R}^p$ with at most s/2 non-zero elements.

CAMBRIDGE

4 What is the *subdifferential* of a convex function at a point x in its domain? State a result concerning the minimisers of convex functions and their subdifferentials. Write down an expression for the subdifferential of the ℓ_1 -norm.

Let $Y\in\mathbb{R}^n$ be a vector of responses and $X\in\mathbb{R}^{n\times p}$ a matrix of predictors. Consider the objective function

$$Q_{\gamma}(\beta;Y) = \frac{1}{\sqrt{n}} \|Y - X\beta\|_2 + \gamma \|\beta\|_1$$

where $\gamma > 0$. Now let $\hat{\beta}_{\lambda}$ be a minimiser of

$$\frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

and define $\hat{\sigma}_{\lambda} = \|Y - X\hat{\beta}_{\lambda}\|_2/\sqrt{n}$. Show that writing $\gamma(\lambda) = \lambda/\hat{\sigma}_{\lambda}$, we have that $\hat{\beta}_{\lambda}$ is a minimiser of $Q_{\gamma(\lambda)}(\cdot;Y)$ when $\hat{\sigma}_{\lambda} > 0$. [Standard results stated in lectures concerning subdifferentials may be used without proof.]

Assume the response Y follows a normal linear model of the form

$$Y = X\beta^0 + \varepsilon,$$

where $\varepsilon \sim N_n(0, \sigma^2 I)$. Suppose $Z \in \mathbb{R}^n$ is an additional predictor and let $\tilde{\beta}_{\gamma}$ be a minimiser of $Q_{\gamma}(\cdot; Z)$. Define $R_{\gamma} = Z - X \tilde{\beta}_{\gamma}$. Finally define

$$T = R_{\gamma}^T (Y - X\hat{\beta}_{\lambda}) / \|R_{\gamma}\|_2$$

where it is assumed that $R_{\gamma} \neq 0$. Show that $T = W + \Delta$ where $W \sim N(0, \sigma^2)$ and

$$|\Delta| \leqslant \sqrt{n\gamma} \|\beta^0 - \hat{\beta}_\lambda\|_1.$$

5 Let \mathcal{G} be a directed acyclic graph (DAG). What is meant by the moralised graph of \mathcal{G} ? What does it mean for A to be *d*-separated from B by S, where A, B, S are disjoint sets of nodes of \mathcal{G} ? State a result concerning presence or absence of an edge between two vertices and their *d*-separation. [You need not define standard graph terminology such as descendant, parent, topological order, collider or path in your answer.]

What does it mean for \mathcal{G} to be *faithful* to a distribution P? What is the conditional independence graph of a distribution P? Prove that if \mathcal{G} is faithful to P then the moralised graph of \mathcal{G} is the conditional independence graph of P.

Now suppose $Z \sim N_p(0, \Sigma)$ with Σ positive definite. Briefly describe the methods of *neighbourhood selection* and the *graphical Lasso* for estimating the conditional independence graph using independent data $x_1, \ldots, x_n \sim N_p(0, \Sigma)$. [You need not motivate or justify why the methods work.]

Briefly explain how one could modify the PC algorithm to make use of an estimate of the conditional independence graph to reduce computation.

UNIVERSITY OF

6 Let \mathcal{H} be a reproducing kernel Hilbert space (RKHS) of functions on an input space \mathcal{X} with reproducing kernel k. Let $Y \in \mathbb{R}^n$ be a response vector satisfying $Y_i = f^0(x_i) + \varepsilon_i$ with $x_i \in \mathcal{X}$ for $i = 1, ..., n, f^0 \in \mathcal{H}, \mathbb{E}(\varepsilon) = 0$ and $\operatorname{Var}(\varepsilon) = \sigma^2 I$. Write down the optimisation problem solved by kernel ridge regression to produce an estimated regression function $\hat{f}_{\lambda} \in \mathcal{H}$ when the tuning parameter is $\lambda > 0$.

Let $K \in \mathbb{R}^{n \times n}$ be the matrix with *ij*th entry $K_{ij} = k(x_i, x_j)$ and eigenvalues $d_1 \ge d_2 \ge \cdots \ge d_n$. Prove that

$$\frac{1}{n}\mathbb{E}\bigg\{\sum_{i=1}^{n}\{f^{0}(x_{i})-\hat{f}_{\lambda}(x_{i})\}^{2}\bigg\} \leqslant \frac{\sigma^{2}}{n}\frac{1}{\lambda}\sum_{i=1}^{n}\min(d_{i}/4,\lambda)+\frac{\lambda}{4n}\|f^{0}\|_{\mathcal{H}}^{2}.$$

[You may use standard properties of positive definite kernels without proof, and you may use the representer theorem without proof.]

END OF PAPER